【24h】

Blood flow and cell-free layer in microvessels.

机译:微血管中的血流和无细胞层。

获取原文
获取原文并翻译 | 示例
           

摘要

Blood is modeled as a suspension of red blood cells using the dissipative particle dynamics method. The red blood cell membrane is coarse-grained for efficient simulations of multiple cells, yet accurately describes its viscoelastic properties. Blood flow in microtubes ranging from 10 to 40 mum in diameter is simulated in three dimensions for values of hematocrit in the range of 0.15-0.45 and carefully compared with available experimental data. Velocity profiles for different hematocrit values show an increase in bluntness with an increase in hematocrit. Red blood cell center-of-mass distributions demonstrate cell migration away from the wall to the tube center. This results in the formation of a cell-free layer next to the tube wall corresponding to the experimentally observed Fahraeus and Fahraeus-Lindqvist effects. The predicted cell-free layer widths are in agreement with those found in in vitro experiments; the results are also in qualitative agreement with in vivo experiments. However, additional features have to be taken into account for simulating microvascular flow, e.g., the endothelial glycocalyx. The developed model is able to capture blood flow properties and provides a computational framework at the mesoscopic level for obtaining realistic predictions of blood flow in microcirculation under normal and pathological conditions.
机译:使用耗散粒子动力学方法将血液建模为红细胞的悬浮液。红细胞膜是粗颗粒的,可有效模拟多个细胞,但仍能准确描述其粘弹性。在三个维度上模拟了直径在10到40微米范围内的微管中的血流,其血细胞比容值在0.15-0.45范围内,并仔细与可用的实验数据进行比较。不同血细胞比容值的速度曲线显示血细胞比容增加时钝度增加。红细胞质量中心分布表明细胞从壁迁移到管中心。这导致在管壁附近形成无细胞层,这与实验观察到的Fahraeus和Fahraeus-Lindqvist效应相对应。预测的无细胞层宽度与体外实验中发现的一致。结果也与体内实验定性一致。但是,为了模拟微血管流动,例如内皮糖萼,必须考虑其他特征。所开发的模型能够捕获血流特性,并提供介观水平的计算框架,以便在正常和病理条件下获得微循环中血流的现实预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号