首页> 外文期刊>Medical engineering & physics. >Rapid pressure-to-flow dynamics of cerebral autoregulation induced by instantaneous changes of arterial CO2
【24h】

Rapid pressure-to-flow dynamics of cerebral autoregulation induced by instantaneous changes of arterial CO2

机译:动脉CO2瞬时变化引起的脑自动调节的快速压力动态

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Continuous assessment of CA is desirable in a number of clinical conditions, where cerebral hemodynamics may change within relatively short periods. In this work, we propose a novel method that can improve temporal resolution when assessing the pressure-to-flow dynamics in the presence of rapid changes in arterial CO2. A time-varying multivariate model is proposed to adaptively suppress the instantaneous effect of CO2 on CBFV by the recursive least square (RLS) method. Autoregulation is then quantified from the phase difference (PD) between arterial blood pressure (ABP) and CBFV by calculating the instantaneous PD between the signals using the Hilbert transform (HT). A Gaussian filter is used prior to HT in order to optimize the temporal and frequency resolution and show the rapid dynamics of cerebral autoregulation. In 13 healthy adult volunteers, rapid changes of arterial CO2 were induced by rebreathing expired air, while simultaneously and continuously recording ABP, CBFV and end-tidal CO2 (ETCO2). Both simulation and physiological studies show that the proposed method can reduce the transient distortion of the instantaneous phase dynamics caused by the effect of CO2 and is faster than our previous method in tracking time-varying autoregulation. The normalized mean square error (NMSE) of the predicted CBFV can be reduced significantly by 38.7% and 37.7% (p < 0.001) without and with the Gaussian filter applied, respectively, when compared with the previous univariate model. These findings suggest that the proposed method is suitable to track rapid dynamics of cerebral autoregulation despite the influence of confounding-covariates. (C) 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
机译:在许多临床条件下,需要连续评估CA,在这些条件下脑血流动力学可能会在相对较短的时间内发生变化。在这项工作中,我们提出了一种新颖的方法,当在动脉CO2快速变化的情况下评估压力-流量动态时,可以提高时间分辨率。提出了一种时变多元模型,通过递推最小二乘(RLS)方法自适应地抑制CO2对CBFV的瞬时影响。然后,通过使用希尔伯特变换(HT)计算信号之间的瞬时PD,从动脉血压(ABP)和CBFV之间的相位差(PD)量化自动调节。在HT之前使用高斯滤波器,以优化时间和频率分辨率并显示大脑自动调节的快速动态。在13名健康的成年人志愿者中,通过呼出呼出的空气来诱导动脉CO2的快速变化,同时连续记录ABP,CBFV和潮气末CO2(ETCO2)。仿真和生理研究均表明,所提出的方法可以减少由于二氧化碳的影响而引起的瞬时相动力学的瞬时畸变,并且在跟踪时变自动调节方面比我们先前的方法要快。与先前的单变量模型相比,使用和未使用高斯滤波器时,预测CBFV的标准化均方误差(NMSE)可以分别显着降低38.7%和37.7%(p <0.001)。这些发现表明,尽管存在混杂变量的影响,但所提出的方法仍适用于跟踪大脑自动调节的快速动态。 (C)2014年IPEM。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号