...
首页> 外文期刊>Medical engineering & physics. >Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics
【24h】

Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics

机译:流体-结构相互作用建模对主动脉根生物力学计算分析的影响

获取原文
获取原文并翻译 | 示例

摘要

Numerical modeling can provide detailed and quantitative information on aortic root (AR) biomechanics, improving the understanding of AR complex pathophysiology and supporting the development of more effective clinical treatments. From this standpoint, fluid-structure interaction (FSI) models are currently the most exhaustive and potentially realistic computational tools. However, AR FSI modeling is extremely challenging and computationally expensive, due to the explicit simulation of coupled AR fluid dynamics and structural response, while accounting for complex morphological and mechanical features. We developed a novel FSI model of the physiological AR simulating its function throughout the entire cardiac cycle. The model includes an asymmetric MRI-based geometry, the description of aortic valve (AV) non-linear and anisotropic mechanical properties, and time-dependent blood pressures. By comparison to an equivalent finite element structural model, we quantified the balance between the extra information and the extra computational cost associated with the FSI approach. Tissue strains and stresses computed through the two approaches did not differ significantly. The FSI approach better captured the fast AV opening and closure, and its interplay with blood fluid dynamics within the Valsalva sinuses. It also reproduced the main features of in vivo AR fluid dynamics. However, the FSI simulation was ten times more computationally demanding than its structural counterpart. Hence, the FSI approach may be worth the extra computational cost when the tackled scenarios are strongly dependent on AV transient dynamics, Valsalva sinuses fluid dynamics in relation to coronary perfusion (e.g. sparing techniques), or AR fluid dynamic alterations (e.g. bicuspid AV).
机译:数值建模可以提供有关主动脉根(AR)生物力学的详细和定量信息,从而增进对AR复杂病理生理学的理解,并支持开发更有效的临床治疗方法。从这个角度来看,流固耦合模型(FSI)是目前最详尽,最现实的计算工具。但是,AR FSI建模极具挑战性且计算量大,这是由于对耦合的AR流体动力学和结构响应进行了显式仿真,同时考虑了复杂的形态和机械特征。我们开发了一种新型的生理性AR的FSI模型,以模拟其在整个心动周期中的功能。该模型包括基于MRI的非对称几何形状,对主动脉瓣(AV)非线性和各向异性机械特性的描述,以及随时间变化的血压。通过与等效的有限元结构模型进行比较,我们量化了与FSI方法相关的额外信息和额外计算成本之间的平衡。通过两种方法计算出的组织应变和压力没有显着差异。 FSI方法可以更好地捕捉快速的AV打开和关闭,以及其与Valsalva鼻窦内的血液动力学之间的相互作用。它也再现了体内AR流体动力学的主要特征。但是,FSI仿真的计算要求是其结构对应要求的十倍。因此,当所解决的场景强烈依赖于AV瞬态动力学,Valsalva窦性与冠状动脉灌注相关的流体动力学(例如备用技术)或AR流体动力学改变(例如双尖瓣AV)时,FSI方法可能值得额外的计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号