首页> 美国卫生研究院文献>Journal of Biomechanical Engineering >Fluid-Structure Interaction Modeling of Abdominal Aortic Aneurysms: The Impact of Patient-Specific Inflow Conditions and Fluid/Solid Coupling
【2h】

Fluid-Structure Interaction Modeling of Abdominal Aortic Aneurysms: The Impact of Patient-Specific Inflow Conditions and Fluid/Solid Coupling

机译:腹主动脉瘤的流固耦合模型:患者特定的流入情况和流固耦合的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rupture risk assessment of abdominal aortic aneurysms (AAA) by means of biomechanical analysis is a viable alternative to the traditional clinical practice of using a critical diameter for recommending elective repair. However, an accurate prediction of biomechanical parameters, such as mechanical stress, strain, and shear stress, is possible if the AAA models and boundary conditions are truly patient specific. In this work, we present a complete fluid-structure interaction (FSI) framework for patient-specific AAA passive mechanics assessment that utilizes individualized inflow and outflow boundary conditions. The purpose of the study is two-fold: (1) to develop a novel semiautomated methodology that derives velocity components from phase-contrast magnetic resonance images (PC-MRI) in the infrarenal aorta and successfully apply it as an inflow boundary condition for a patient-specific fully coupled FSI analysis and (2) to apply a one-way–coupled FSI analysis and test its efficiency compared to transient computational solid stress and fully coupled FSI analyses for the estimation of AAA biomechanical parameters. For a fully coupled FSI simulation, our results indicate that an inlet velocity profile modeled with three patient-specific velocity components and a velocity profile modeled with only the axial velocity component yield nearly identical maximum principal stress (σ1), maximum principal strain (ε1), and wall shear stress (WSS) distributions. An inlet Womersley velocity profile leads to a 5% difference in peak σ1, 3% in peak ε1, and 14% in peak WSS compared to the three-component inlet velocity profile in the fully coupled FSI analysis. The peak wall stress and strain were found to be in phase with the systolic inlet flow rate, therefore indicating the necessity to capture the patient-specific hemodynamics by means of FSI modeling. The proposed one-way–coupled FSI approach showed potential for reasonably accurate biomechanical assessment with less computational effort, leading to differences in peak σ1, ε1, and WSS of 14%, 4%, and 18%, respectively, compared to the axial component inlet velocity profile in the fully coupled FSI analysis. The transient computational solid stress approach yielded significantly higher differences in these parameters and is not recommended for accurate assessment of AAA wall passive mechanics. This work demonstrates the influence of the flow dynamics resulting from patient-specific inflow boundary conditions on AAA biomechanical assessment and describes methods to evaluate it through fully coupled and one-way–coupled fluid-structure interaction analysis.
机译:通过生物力学分析评估腹主动脉瘤(AAA)的破裂风险是使用临界直径推荐择期修复的传统临床实践的可行替代方法。但是,如果AAA模型和边界条件确实是患者特定的,则可以准确预测生物力学参数,例如机械应力,应变和剪切应力。在这项工作中,我们提出了一个针对患者特定AAA被动力学评估的完整的流体-结构相互作用(FSI)框架,该框架利用了个性化的流入和流出边界条件。该研究的目的有两个方面:(1)开发一种新颖的半自动化方法,该方法从肾下主动脉的相衬磁共振图像(PC-MRI)导出速度分量,并将其成功地应用为肾动脉主动脉的入流边界条件特定于患者的完全耦合FSI分析和(2)应用单向耦合FSI分析,并与瞬态计算固体应力和完全耦合FSI分析进行比较以测试其效率,以评估AAA生物力学参数。对于完全耦合的FSI模拟,我们的结果表明,使用三个特定于患者的速度分量建模的入口速度曲线和仅使用轴向速度分量建模的速度曲线产生了几乎相同的最大主应力(σ1),最大主应变(ε1)以及壁面剪应力(WSS)分布。与完全耦合的FSI分析中的三分量入口速度曲线相比,入口Womersley速度曲线导致峰σ1,峰ε1的3%和峰WSS的差异为5%。发现峰值壁应力和应变与收缩期入口流速同相,因此表明有必要通过FSI模型捕获患者特定的血液动力学。提议的单向耦合FSI方法显示了用较少的计算量就可以进行合理准确的生物力学评估的潜力,与轴向分量相比,峰σ1,ε1和WSS的差异分别为14%,4%和18%。完全耦合的FSI分析中的入口速度曲线。瞬态计算固体应力方法在这些参数上产生明显更高的差异,因此不建议用于AAA墙被动力学的准确评估。这项工作演示了由患者特定的流入边界条件引起的流动动力学对AAA生物力学评估的影响,并描述了通过完全耦合和单向耦合的流体-结构相互作用分析对其进行评估的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号