首页> 外文期刊>Medical Physics >Kilovoltage beam Monte Carlo dose calculations in submillimeter voxels for small animal radiotherapy.
【24h】

Kilovoltage beam Monte Carlo dose calculations in submillimeter voxels for small animal radiotherapy.

机译:小动物放疗中亚毫米级体素中的千伏束蒙特卡洛剂量计算。

获取原文
获取原文并翻译 | 示例
           

摘要

PURPOSE: Small animal conformal radiotherapy (RT) is essential for preclinical cancer research studies and therefore various microRT systems have been recently designed. The aim of this paper is to efficiently calculate the dose delivered using our microRT system based on a microCT scanner with the Monte Carlo (MC) method and to compare the MC calculations to film measurements. METHODS: Doses from 2-30 mm diameter 120 kVp photon beams deposited in a solid water phantom with 0.2 x 0.2 x 0.2 mm3 voxels are calculated using the latest versions of the EGSnrc codes BEAMNRC and DOSXYZNRC. Two dose calculation approaches are studied: a two-step approach using phase-space files and direct dose calculation with BEAMNRC simulation sources. Due to the small beam size and submillimeter voxel size resulting in long calculation times, variance reduction techniques are studied. The optimum bremsstrahlung splitting number (NBRSPL in BEAMNRC) and the optimum DOSXYZNRC photon splitting (Nsplit) number are examined for both calculation approaches and various beam sizes. The dose calculation efficiencies and the required number of histories to achieve 1% statistical uncertainty--with no particle recycling--are evaluated for 2-30 mm beams. As a final step, film dose measurements are compared to MC calculated dose distributions. RESULTS: The optimum NBRSPL is approximately 1 x 10(6) for both dose calculation approaches. For the dose calculations with phase-space files, Nsplit varies only slightly for 2-30 mm beams and is established to be 300. Nsplit for the DOSXYZNRC calculation with the BEAMNRC source ranges from 300 for the 30 mm beam to 4000 for the 2 mm beam. The calculation time significantly increases for small beam sizes when the BEAMNRC simulation source is used compared to the simulations with phase-space files. For the 2 and 30 mm beams, the dose calculations with phase-space files are more efficient than the dose calculations with BEAMNRC sources by factors of 54 and 1.6, respectively. The dose calculation efficiencies converge for beams with diameters larger than 30 mm. CONCLUSIONS: A very good agreement of MC calculated dose distributions to film measurements is found. The mean difference of percentage depth dose curves between calculated and measured data for 2, 5, 10, and 20 mm beams is 1.8%.
机译:目的:小动物适形放疗(RT)对于临床前癌症研究至关重要,因此最近已设计了各种microRT系统。本文的目的是使用我们的基于microCT扫描仪的microRT系统和蒙特卡洛(MC)方法有效地计算出剂量,并将MC计算与胶片测量结果进行比较。方法:使用最新版本的EGSnrc代码BEAMNRC和DOSXYZNRC计算从直径为2-30 mm的120 kVp光子束以0.2 x 0.2 x 0.2 mm3体素沉积在固体水体模中的剂量。研究了两种剂量计算方法:使用相空间文件的两步方法以及使用BEAMNRC模拟源进行直接剂量计算。由于小光束尺寸和亚毫米体素尺寸导致计算时间长,因此研究了方差减小技术。对于计算方法和各种光束大小,都检查了最佳致辐射分裂数(BEAMCNRC中的NBRSPL)和最佳DOSXYZNRC光子分裂数(Nsplit)。对于2至30 mm的光束,评估了剂量计算效率和达到1%统计不确定性所需的历史数-无颗粒回收-。最后一步,将薄膜剂量测量结果与MC计算的剂量分布进行比较。结果:两种剂量计算方法的最佳NBRSPL约为1 x 10(6)。对于使用相空间文件的剂量计算,对于2-30 mm的光束,Nsplit的变化很小,并设置为300。使用BEAMNRC源的DOSXYZNRC计算的Nsplit的范围从30 mm的光束的300到2 mm的4000的范围光束。与具有相空间文件的仿真相比,使用BEAMNRC仿真源时,对于较小的光束尺寸,计算时间会显着增加。对于2 mm和30 mm的光束,相空间文件的剂量计算比BEAMNRC光源的剂量计算效率高50倍和1.6倍。对于直径大于30 mm的光束,剂量计算效率收敛。结论:MC计算的剂量分布与胶片测量结果非常吻合。 2、5、10和20 mm光束的计算数据和测量数据之间的深度剂量百分比曲线的平均差为1.8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号