首页> 外文期刊>Medical Physics >The effect of set-up uncertainties, contour changes, and tissue inhomogeneities on target dose-volume histograms.
【24h】

The effect of set-up uncertainties, contour changes, and tissue inhomogeneities on target dose-volume histograms.

机译:设置不确定性,轮廓变化和组织不均匀性对目标剂量-体积直方图的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding set-up uncertainty effects on dose distributions is an important clinical problem but difficult to model accurately due to their dependence on tissue inhomogeneities and changes in the surface contour (i.e., variant effects). The aims are: (1) to evaluate and quantify the invariant and variant effects of set-up uncertainties, contour changes and tissue inhomogeneities on target dose-volume histograms (DVHs); (2) to propose a method to interpolate (variant) DVHs. We present a lung cancer patient to estimate the significance of set-up uncertainties, contour changes and tissue inhomogeneities in target DVHs. Differential DVHs are calculated for 15 displacement errors (with respect to the isocenter) using (1) an invariant shift of the dose distribution at the isocenter, (2) a full variant calculation, and (3) a B-spline interpolation applied to sparsely sampled variant DVHs. The collapsed cone algorithm was used for all dose calculations. Dosimetric differences are quantified with the root mean square (RMS) deviation and the equivalent uniform dose (EUD). To determine set-up uncertainty effects, weighted mean EUDs, assuming normally distributed displacement errors, are used. The maximum absolute difference and RMS deviation in the integral DVHs' relative dose between (1) the invariant and calculated curves are 65.2% and 5.8% and (2) the interpolated and calculated curves are 16.9% and 2.5%. Similarly, the maximum absolute difference and RMS deviation in mean EUD as a function of the set-up uncertainty's standard deviation between (1) the invariant and calculated curves are 0.02 and 0.01 Gy; and (2) the interpolated and calculated curves are 0.01 and 0.006 Gy. Since a "worst-case" example is selected, we conclude that, in the majority of clinical cases, the variant effects of contour changes, tissue inhomogeneities and set-up uncertainties on EUD are negligible. Interpolation is a valid, efficient method to approximate DVHs.
机译:理解对剂量分布的设置不确定性影响是一个重要的临床问题,但是由于它们依赖于组织不均匀性和表面轮廓的变化(即变异效应),因此难以准确建模。目的是:(1)评估和量化设置不确定性,轮廓变化和组织不均匀性对目标剂量体积直方图(DVHs)的不变和变异影响; (2)提出一种插值(变量)DVH的方法。我们介绍了一名肺癌患者,以评估目标DVH中设置不确定性,轮廓变化和组织不均匀性的重要性。使用(1)等中心点处剂量分布的不变位移,(2)完整变量计算和(3)稀疏地应用B样条插值,针对15个位移误差(相对于等中心点)计算差分DVH。采样的变体DVH。塌陷锥算法用于所有剂量计算。剂量学差异通过均方根(RMS)偏差和等效均匀剂量(EUD)进行量化。为了确定设置的不确定性影响,假设正态分布位移误差,则使用加权平均EUD。 (1)不变曲线和计算曲线之间的积分DVHs相对剂量的最大绝对差和RMS偏差为65.2%和5.8%,以及(2)插值曲线和计算曲线为16.9%和2.5%。类似地,平均EUD的最大绝对差和RMS偏差是设置不确定性标准偏差(1)不变曲线和计算曲线之间的函数,分别为0.02和0.01 Gy; (2)内插和计算曲线分别为0.01和0.006 Gy。由于选择了“最坏情况”的例子,因此我们得出结论,在大多数临床病例中,轮廓变化,组织不均匀性和设置不确定性对EUD的不同影响可忽略不计。插值是一种有效,有效的方法来近似DVH。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号