首页> 外文期刊>Meccanica: Journal of the Italian Association of Theoretical and Applied Mechanics >Dynamic multi-axial behavior of shape memory alloy nanowires with coupled thermo-mechanical phase-field models
【24h】

Dynamic multi-axial behavior of shape memory alloy nanowires with coupled thermo-mechanical phase-field models

机译:耦合热机械相场模型的形状记忆合金纳米线的动态多轴行为

获取原文
获取原文并翻译 | 示例
       

摘要

The objective of this paper is to provide new insight into the dynamic thermo-mechanical properties of shape memory alloy (SMA) nanowires subjected to multi-axial loadings. The phase-field model with Ginzburg–Landau energy, having appropriate strain based order parameter and strain gradient energy contributions, is used to study the martensitic transformations in the representative 2D square-torectangular phase transformations for FePd SMA nanowires. The microstructure and mechanical behavior of martensitic transformations in SMA nanostructures have been studied extensively in the literature for uniaxial loading, usually under isothermal assumptions. The developed model describes the martensitic transformations in SMAs based on the equations for momentum and energy with bi-directional coupling via strain, strain rate and temperature. These governing equations of the thermo-mechanical model are numerically solved simultaneously for different external loadings starting with the evolved twinned and austenitic phases. We observed a strong influence of multi-axial loading on dynamic thermo-mechanical properties of SMA nanowires. Notably, the multi-axial loadings are quite distinct as compared to the uniaxial loading case, and the particular axial stress level is reached at a lower strain. The SMA behaviors predicted by the model are in qualitative agreements with experimental and numerical results published in the literature. The new results reported here on the nanowire response to multi-axial loadings provide new physical insight into underlying phenomena and are important, for example, in developing better SMAbased MEMS and NEMS devices
机译:本文的目的是提供对形状记忆合金(SMA)纳米线在多轴载荷下的动态热机械性能的新见解。具有Ginzburg-Landau能量的相场模型具有适当的基于应变的阶次参数和应变梯度能量贡献,用于研究FePd SMA纳米线的代表性2D矩形矩形相变中的马氏体相变。 SMA纳米结构中马氏体相变的微观结构和力学行为已在文献中针对单轴载荷进行了广泛研究,通常是在恒温条件下进行的。所开发的模型基于动量和能量方程,通过应变,应变率和温度进行双向耦合,描述了SMA中的马氏体转变。从演化的孪晶相和奥氏体相开始,针对不同的外部载荷,同时数值求解了热力学模型的这些控制方程。我们观察到多轴负载对SMA纳米线的动态热机械性能有很大影响。值得注意的是,与单轴载荷情况相比,多轴载荷非常不同,并且在较低的应变下达到了特定的轴向应力水平。该模型预测的SMA行为与文献中发表的实验和数值结果在质量上吻合。此处报道的有关纳米线对多轴负载响应的新结果提供了对潜在现象的新物理见解,并且在例如开发更好的基于SMA的MEMS和NEMS器件方面非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号