...
首页> 外文期刊>Mathematical Programming Computation: A Publication of the Mathematical Programming Society >Revisiting compressed sensing: exploiting the efficiency of simplex and sparsification methods
【24h】

Revisiting compressed sensing: exploiting the efficiency of simplex and sparsification methods

机译:回顾压缩感知:利用单纯形和稀疏化方法的效率

获取原文
获取原文并翻译 | 示例

摘要

We propose two approaches to solve large-scale compressed sensing problems. The first approach uses the parametric simplex method to recover very sparse signals by taking a small number of simplex pivots, while the second approach reformulates the problem using Kronecker products to achieve faster computation via a sparser problem formulation. In particular, we focus on the computational aspects of these methods in compressed sensing. For the first approach, if the true signal is very sparse and we initialize our solution to be the zero vector, then a customized parametric simplex method usually takes a small number of iterations to converge. Our numerical studies show that this approach is 10 times faster than state-of-the-art methods for recovering very sparse signals. The second approach can be used when the sensing matrix is the Kronecker product of two smaller matrices.We show that the best-known sufficient condition for the Kronecker compressed sensing (KCS) strategy to obtain a perfect recovery is more restrictive than the corresponding condition if using the first approach. However, KCS can be formulated as a linear program with a very sparse constraint matrix, whereas the first approach involves a completely dense constraint matrix. Hence, algorithms that benefit from sparse problem representation, such as interior point methods (IPMs), are expected to have computational advantages for the KCS problem.We numerically demonstrate that KCS combined with IPMs is up to 10 times faster than vanilla IPMs and state-of-the-art methods such as ?_1_?_s and Mirror Prox regardless of the sparsity level or problem size.
机译:我们提出了两种解决大规模压缩感测问题的方法。第一种方法使用参量单形方法通过采取少量的单形枢轴来恢复非常稀疏的信号,而第二种方法使用Kronecker产品重新构造问题以通过稀疏问题公式实现更快的计算。特别是,我们专注于压缩感知中这些方法的计算方面。对于第一种方法,如果真实信号非常稀疏并且我们将解决方案初始化为零矢量,则定制的参数单纯形法通常需要进行少量迭代才能收敛。我们的数值研究表明,该方法比恢复非常稀疏的信号的最新方法快10倍。当传感矩阵是两个较小矩阵的Kronecker乘积时,可以使用第二种方法。我们证明,如果满足以下条件,则Kronecker压缩传感(KCS)策略获得理想恢复的最充分条件比相应条件更具限制性。使用第一种方法。但是,可以将KCS公式化为具有非常稀疏的约束矩阵的线性程序,而第一种方法涉及完全密集的约束矩阵。因此,期望从稀疏问题表示中受益的算法(例如内点法(IPM))在KCS问题上具有计算上的优势。我们用数值方法证明,结合IPM的KCS的速度比普通IPM快10倍,并且状态-最先进的方法,例如?_1 _?_ s和Mirror Prox,而无论其稀疏程度或问题大小如何。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号