首页> 外文期刊>Management science: Journal of the Institute of Management Sciences >Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning
【24h】

Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning

机译:复杂性与股票收益特征:基于复杂投资者学习的经验证据和资产价格模型

获取原文
获取原文并翻译 | 示例

摘要

Empirical evidence on the distributional characteristics of common stock returns indicates: (1) A power-law tail index close to three describes the behavior of the positive tail of the survivor function of returns (pr(r > x) x –), a reflection of fat tails; (2) general linear and nonlinear dependencies exist in the time series of returns; (3) the time-series return process is characterized by short-run dependence (short memory) in both returns as well as their volatility, the latter usually characterized in the form of autoregressive conditional heteroskedasticity; and (4) the time-series return process probably does not exhibit long memory, but the squared returns process does exhibit long memory. We propose a model of complex, self-referential learning and reasoning amongst economic agents that jointly produces security returns consistent with these general observed facts and which are supported here by empirical results presented for a benchmark sample of 50 stocks traded on the New York Stock Exchange. The market we postulate is populated by traders who reason inductively while compressing information into a few fuzzy notions that they can in turn process and analyze with fuzzy logic. We analyze the implications of such behavior for the returns on risky securities within the context of an artificial stock market model. Dynamic simulation experiments of the market are conducted, from which market-clearing prices emerge, allowing us to then compute realized returns. We test the effects of varying values of the parameters of the model on the character of the simulated returns. The results indicate that the model proposed in this paper can jointly account for the presence of a power-law characterization of the positive tail of the survivor function of returns with exponent on the order of three, for autoregressive conditional heteroskedasticity, for long memory in volatility, and for general nonlinear dependencies in returns.
机译:有关普通股收益率分布特征的经验证据表明:(1)幂律尾指数接近于3,描述了收益幸存者函数的正尾行为(pr(r> x)x –),反映了肥尾巴(2)收益的时间序列中存在一般的线性和非线性依赖性; (3)时间序列回归过程的特征是两个收益的短期依赖关系(短期记忆)以及它们的波动性,后者通常以自回归条件异方差形式出现; (4)时间序列返回过程可能不显示长时间存储,但是平方返回过程确实显示了长时间存储。我们提出了一种在经济主体之间进行复杂的,自我参照的学习和推理的模型,该模型共同产生与这些普遍观察到的事实一致的证券收益,并在此得到纽约证券交易所交易的50只股票的基准样本的经验结果的支持。 。我们假定的市场由交易员组成,他们以归纳推理的方式将信息压缩为一些模糊的概念,他们进而可以使用模糊逻辑进行处理和分析。在人工股票市场模型的背景下,我们分析了这种行为对风险证券收益的影响。进行了市场的动态模拟实验,从中出现了市场清算价格,使我们能够计算已实现的回报。我们测试了模型参数变化值对模拟收益特征的影响。结果表明,本文提出的模型可以共同解决幂函数表征特征,即正负条件异方差,长时波动记忆性,收益率幸存函数正尾的幂指数表征,指数为三的数量级。 ,以及回报中的一般非线性依存关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号