首页> 外文期刊>Foundations of computational mathematics >Generalized Tractability for Multivariate Problems Part II: Linear Tensor Product Problems, Linear Information, and Unrestricted Tractability
【24h】

Generalized Tractability for Multivariate Problems Part II: Linear Tensor Product Problems, Linear Information, and Unrestricted Tractability

机译:多元问题的广义可牵引性第二部分:线性张量积问题,线性信息和无限制的可牵引性

获取原文
获取原文并翻译 | 示例
       

摘要

We continue the study of generalized tractability initiated in our previous paper "Generalized tractability for multivariate problems, Part I: Linear tensor product problems and linear information", J. Complex. 23:262-295, 2007. We study linear tensor product problems for which we can compute linear information which is given by arbitrary continuous linear functionals. We want to approximate an operator S-d given as the d-fold tensor product of a compact linear operator S-1 for d = 1, 2,..., with parallel to S-1 parallel to = 1 and S-1 having at least two positive singular values. Let n(epsilon, S-d) be the minimal number of information evaluations needed to approximate Sd to within epsilon is an element of [0, 1]. We study generalized tractability by verifying when n(epsilon, S-d) can be bounded by a multiple of a power of T(epsilon(-1), d) for all (epsilon(-1), d). Omega subset of [1, infinity) x N. Here, T is a tractability function which is non-decreasing in both variables and grows slower than exponentially to infinity. We study the exponent of tractability which is the smallest power of T(epsilon(-1), d) whose multiple bounds n(epsilon, S-d). We also study weak tractability, i.e., when lim(epsilon-1+d ->infinity), ((epsilon-1, d)is an element of Omega) ln n(epsilon, S-d)/(epsilon(-1) + d) = 0. In our previous paper, we studied generalized tractability for proper subsets Omega of [1, infinity) x N, whereas in this paper we take the unrestricted domain Omega(unr) = [1, infinity) x N. We consider the three cases for which we have only finitely many positive singular values of S-1, or they decay exponentially or polynomially fast. Weak tractability holds for these three cases, and for all linear tensor product problems for which the singular values of S-1 decay slightly faster than logarithmically. We provide necessary and sufficient conditions on the function T such that generalized tractability holds. These conditions are obtained in terms of the singular values of S-1 and mostly asymptotic properties of T. The tractability conditions tell us how fast T must go to infinity. It is known that T must go to infinity faster than polynomially. We show that generalized tractability is obtained for T(x, y) = x(1+ln y). We also study tractability functions T of product form, T(x, y) = f(1)(x)f(2)(x). Assume that a(i) = lim inf(x -> 8)(ln ln f(i)(x))/(ln ln x) is finite for i = 1, 2. Then generalized tractability takes place iff a(i) > 1 and (a(1) - 1)(a(2) - 1) >= 1, and if (a(1) - 1)(a(2) - 1) = 1 then we need to assume one more condition given in the paper. If (a(1) - 1)(a(2) - 1) > 1 then the exponent of tractability is zero, and if (a(1) - 1)(a(2) - 1) = 1 then the exponent of tractability is finite. It is interesting to add that for T being of the product form, the tractability conditions as well as the exponent of tractability depend only on the second singular eigenvalue of S-1 and they do not depend on the rate of their decay. Finally, we compare the results obtained in this paper for the unrestricted domain Omega(unr) with the results from our previous paper obtained for the restricted domain Omega(res) = [1, infinity) x {1, 2, ..., d*}boolean OR[1, epsilon(-1)(0)) x N with d* >= 1 and epsilon(0) is an element of (0, 1). In general, the tractability results are quite different. We may have generalized tractability for the restricted domain and no generalized tractability for the unrestricted domain which is the case, for instance, for polynomial tractability T(x, y) = xy. We may also have generalized tractability for both domains with different or with the same exponents of tractability.
机译:我们将继续在先前的论文“多元问题的广义可处理性,第一部分:线性张量积问题和线性信息”(J. Complex)中开始研究广义可处理性。 23:262-295,2007。我们研究了线性张量积问题,可以计算任意连续线性函数给出的线性信息。我们想近似一个算子Sd,它是紧致线性算子S-1的d倍张量积,对于d = 1、2,...,平行于S-1且平行于= 1且S-1具有至少两个正奇异值。令n(epsilon,S-d)为在ε内将Sd近似为[0,1]所需的最少信息评估数量。我们通过验证n(epsilon,S-d)何时可以被所有(epsilon(-1),d)的T(epsilon(-1),d)的幂的倍数来约束来研究广义的可处理性。 [1,无穷大] x N的欧米茄子集。在这里,T是易处理性函数,在两个变量中均不减小,并且增长到比无穷大的速度慢。我们研究了可延展性的指数,该指数是T(epsilon(-1),d)的最小幂,其多重界为n(epsilon,S-d)。我们还研究了易延展性,即lim(epsilon-1 + d-> infinity)时,((epsilon-1,d)是欧米茄的元素)ln n(epsilon,Sd)/(epsilon(-1)+ d)=0。在我们之前的论文中,我们研究了[1,infinity)x N的适当子集Omega的广义可牵引性,而在本文中,我们采用了不受限制的Omega(unr)= [1,infinity)x N的域。考虑以下三种情况,在这些情况下,我们只有有限的多个S-1正奇异值,或者它们以指数或多项式速度快速衰减。对于这三种情况,以及对于所有线性张量积问题,S-1的奇异值衰减都快于对数衰减,因此易延展性仍然存在。我们在函数T上提供了必要和充分的条件,以使广义可处理性成立。这些条件是根据S-1的奇异值和T的大多数渐近性质获得的。可延展性条件告诉我们T必须达到无穷大的速度。众所周知,T必须比多项式更快地达到无穷大。我们表明,对于T(x,y)= x(1 + ln y),可以获得广义的可牵引性。我们还研究产品形式的可延展性函数T,T(x,y)= f(1)(x)f(2)(x)。假设a(i)= lim inf(x-> 8)(ln ln f(i)(x))/(ln ln x)对i = 1,2是有限的。 )> 1和(a(1)-1)(a(2)-1)> = 1,并且如果(a(1)-1)(a(2)-1)= 1,则我们需要假设一个本文给出了更多条件。如果(a(1)-1)(a(2)-1)> 1,则可延展性指数为零;如果(a(1)-1)(a(2)-1)= 1,则指数易处理性是有限的。有趣的是,对于T为乘积形式的情况,可延展性条件以及可延展性的指数仅取决于S-1的第二奇异特征值,而与它们的衰减速率无关。最后,我们将本文中针对非受限域Omega(unr)的结果与我们先前针对受限域Omega(res)= [1,infinity)x {1,2,..., d *}布尔OR [1,epsilon(-1)(0))x N,d *> = 1,epsilon(0)是(0,1)的元素。通常,易处理性结果大不相同。对于限制域,我们可能具有广义的可扩展性,而对于非限制域,我们可能没有广义的可扩展性,例如对于多项式可扩展性T(x,y)= xy。对于具有不同或相同可扩展性指数的两个域,我们也可能具有广义可扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号