首页> 外文OA文献 >Generalized Tractability for Multivariate Problems: Part II: Linear Tensor Product Problems, Linear Information, and Unrestricted Tractability
【2h】

Generalized Tractability for Multivariate Problems: Part II: Linear Tensor Product Problems, Linear Information, and Unrestricted Tractability

机译:多元问题的广义可牵引性:第二部分:线性张量积问题,线性信息和无限制的可牵引性

摘要

usepackage{amssymb} egin{document} We continue the study of generalized tractability initiated in our previous paper ``Generalized tractability for multivariate problems, Part I: Linear tensor product problems and linear information'', J. Complexity, 23, 262-295 (2007). We study linear tensor product problems for which we can compute linear information which is given by arbitrary continuous linear functionals. We want to approximate an operator $S_d$ given as the $d$-fold tensor product of a compact linear operator $S_1$ for $d=1,2,dots,$, with $|S_1|=1$ and $S_1$ has at least two positive singular values. Let $n(arepsilon,S_d)$ be the minimal number of information evaluations needed to approximate $S_d$ to within $arepsilonin[0,1]$. We study emph{generalized tractability} by verifying when $n(arepsilon,S_d)$ can be bounded by a multiple of a power of $T(arepsilon^{-1},d)$ for all $(arepsilon^{-1},d)inOmega subseteq[1,infty)imes mathbb{N}$. Here, $T$ is a emph{tractability} function which is non-decreasing in both variables and grows slower than exponentially to infinity. We study the emph{exponent of tractability} which is the smallest power of $T(arepsilon^{-1},d)$ whose multiple bounds $n(arepsilon,S_d)$. We also study emph{weak tractability}, i.e., when $lim_{arepsilon^{-1}+doinfty,(arepsilon^{-1},d)inOmega} ln,n(arepsilon,S_d)/(arepsilon^{-1}+d)=0$. In our previous paper, we studied generalized tractability for proper subsets $Omega$ of $[1,infty)imesmathbb{N}$, whereas in this paper we take the unrestricted domain $Omega^{m unr}=[1,infty)imesmathbb{N}$. We consider the three cases for which we have only finitely many positive singular values of $S_1$, or they decay exponentially or polynomially fast. Weak tractability holds for these three cases, and for all linear tensor product problems for which the singular values of $S_1$ decay slightly faster that logarithmically. We provide necessary and sufficient conditions on the function~$T$ such that generalized tractability holds. These conditions are obtained in terms of the singular values of $S_1$ and mostly limiting properties of $T$. The tractability conditions tell us how fast $T$ must go to infinity. It is known that $T$ must go to infinity faster than polynomially. We show that generalized tractability is obtained for $T(x,y)=x^{1+ln,y}$. We also study tractability functions $T$ of product form, $T(x,y) =f_1(x)f_2(x)$. Assume that $a_i=liminf_{xoinfty}(ln,ln f_i(x))/(ln,ln,x)$ is finite for $i=1,2$. Then generalized tractability takes place iff $$a_i>1 mbox{and} (a_1-1)(a_2-1)ge1,$$ and if $(a_1-1)(a_2-1)=1$ then we need to assume one more condition given in the paper. If $(a_1-1)(a_2-1)>1$ then the exponent of tractability is zero, and if $(a_1-1)(a_2-1)=1$ then the exponent of tractability is finite. It is interesting to add that for $T$ being of the product form, the tractability conditions as well as the exponent of tractability depend only on the second singular eigenvalue of $S_1$ and they do emph{not} depend on the rate of their decay. Finally, we compare the results obtained in this paper for the unrestricted domain $Omega^{m unr}$ with the results from our previous paper obtained for the restricted domain $Omega^{m res}= [1,infty)imes{1,2,dots,d^*},cup,[1,arepsilon_0^{-1})imesmathbb{N}$ with $d^*ge1$ and $arepsilon_0in(0,1)$. In general, the tractability results are quite different. We may have generalized tractability for the restricted domain and no generalized tractability for the unrestricted domain which is the case, for instance, for polynomial tractability $T(x,y)=xy$. We may also have generalized tractability for both domains with different or with the same exponents of tractability. end{document}
机译:usepackage {amssymb} begin {document}我们继续在上一篇论文《多元问题的广义可处理性,第一部分:线性张量积问题和线性信息》中开始进行的广义可处理性研究,J。复杂度,23,262 -295(2007)。我们研究线性张量积问题,可以计算任意连续线性函数给出的线性信息。我们想近似一个运算符$ S_d $,它是紧凑线性运算符$ S_1 $的$ d $倍张量积,其中$ d = 1,2, dots ,, $,其中$ | S_1 | = 1 $和$ S_1 $至少具有两个正奇异值。令$ n( varepsilon,S_d)$为在$ varepsilon in [0,1] $内近似$ S_d $所需的最小信息评估数。我们通过验证$ n( varepsilon,S_d)$何时可以被所有$( varepsilon的$ T( varepsilon ^ {-1},d)$的幂的倍数来界定来研究 emph {广义可牵引性}。 ^ {-1},d) in Omega subseteq [1, infty) times mathbb {N} $。在这里,$ T $是一个 emph {tractability}函数,它在两个变量中都不会减少,并且比指数增长到无穷慢。我们研究 emph {易处理性指数},它是$ T( varepsilon ^ {-1},d)$的最小乘方,其倍数为$ n( varepsilon,S_d)$。我们还研究 emph {弱可延展性},即$ lim _ { varepsilon ^ {-1} + d to infty,( varepsilon ^ {-1},d) in Omega} ln ,n( varepsilon,S_d)/( varepsilon ^ {-1} + d)= 0 $。在我们之前的文章中,我们研究了$ [1, infty) times mathbb {N} $的子集$ Omega $的广义可牵引性,而在本文中,我们采用了不受限制的域$ Omega ^ { rm unr } = [1, infty) times mathbb {N} $。我们考虑三种情况,在这些情况下,我们只有有限的多个正奇异值$ S_1 $,或者它们呈指数或多项式快速衰减。对于这三种情况,以及对于所有线性张量积问题,对于它们来说,$ S_1 $的奇异值的衰减速度比对数衰减快,所以该函数具有较弱的可伸缩性。我们在函数〜$ T $上提供了必要和充分的条件,以使广义可算性成立。这些条件是根据$ S_1 $的奇异值和$ T $的大多数限制性属性获得的。易处理性条件告诉我们$ T $必须达到无穷快的速度。众所周知,$ T $必须比多项式更快地达到无穷大。我们表明,对于$ T(x,y)= x ^ {1+ ln ,y} $,可以获得广义的可牵引性。我们还研究了产品形式$ T(x,y)= f_1(x)f_2(x)$的易处理性函数$ T $。假设$ a_i = liminf_ {x to infty}( ln , ln f_i(x))/( ln , ln ,x)$对于$ i = 1,2 $是有限的。然后如果$ a_i> 1 mbox {and} (a_1-1)(a_2-1) ge1,$$且$(a_1-1)(a_2-1)= 1 $,那么我们需要假设文件中给出了另外一个条件。如果$(a_1-1)(a_2-1)> 1 $,则可扩展性指数为零;如果$(a_1-1)(a_2-1)= 1 $,则可扩展性指数为有限。有趣的是,对于$ T $为产品形式的情况,易处理性条件以及易处理性的指数仅取决于$ S_1 $的第二个奇异特征值,而 emph {不}取决于它们的衰变。最后,我们将本文针对非受限域$ Omega ^ { rm unr} $的结果与我们先前针对受限域$ Omega ^ { rm res} = [1, infty) times {1,2, dots,d ^ * } , cup ,[1, varepsilon_0 ^ {-1}) times mathbb {N} $与$ d ^ * ge1 $和$ varepsilon_0 in(0,1)$。通常,易处理性结果大不相同。对于限制域,我们可能具有广义的可处理性,对于非限制域,我们可能没有广义的可处理性,例如,对于多项式可跟踪性$ T(x,y)= xy $。对于具有不同或相同可扩展性指数的两个域,我们也可能具有广义可扩展性。 end {document}

著录项

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号