首页> 外文期刊>Glycobiology. >NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure.
【24h】

NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure.

机译:核磁共振研究聚异戊二烯醇(dolichol)的首选膜取向及其与聚异戊二烯基识别序列肽的配合物对膜结构的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Earlier NMR studies showed that the polyisoprenols (PIs) dolichol (C95), dolichylphosphate (C95-P) and undecaprenylphosphate (C55-P) could alter membrane structure by inducing in the lamellar phospholipid (PL) bilayer a nonlamellar or hexagonal (Hex II) structure. The destabilizing effect of C95 and C95-P on host fatty acyl chains was supported by small angle X-ray diffraction and freeze-fracture electron microscopy. Our present 1H- and 31P-NMR studies show that the addition of a polyisoprenol recognition sequence (PIRS) peptide to nonlamellar membranes induced by the PIs can reverse the hexagonal structure phase back to a lamellar structure. This finding shows that the PI:PIRS docking complex can modulate the polymorphic phase transitions in PL membranes, a finding that may help us better understand how glycosyl carrier-linked sugar chains may traverse membranes. Using an energy-minimized molecular modeling approach, we also determined that the long axis of C95 in phosphatidylcholine (PC) membranes isoriented approximately parallel to the interface of the lipid bilayer, and that the head and tail groups are positioned near the bilayer interior. In contrast, the phosphate head group of C95-P is anchored at the PC bilayer, and the angle between the long axis of C95-P and the bilayer interface is about 758, giving rise to a preferred conformation more perpendicular to the plane of the bilayer. Molecular modeling calculations further revealed that up to five PIRS peptides can bind cooperatively to a single PI molecule, and this tethered structure has the potential to form a membrane channel. If such a channel were to exist in biological membranes, it could be of functional importance in glycoconjugate translocation, a finding that has not been previously reported.
机译:较早的NMR研究表明,聚异戊二烯(PIs)多元醇(C95),磷酸二氢磷酸酯(C95-P)和十一碳烯基磷酸酯(C55-P)可以通过在层状磷脂(PL)双层中诱导非层状或六边形(Hex II)来改变膜结构。结构体。小角X射线衍射和冷冻断裂电子显微镜证实了C95和C95-P对宿主脂肪酰基链的去稳定作用。我们目前的1H-NMR和31P-NMR研究表明,在由PI诱导的非层状膜上添加聚异戊二烯识别序列(PIRS)肽可以使六边形结构相逆转为层状结构。这一发现表明PI:PIRS对接复合物可以调节PL膜中的多态相变,这一发现可能有助于我们更好地理解糖基载体连接的糖链如何穿越膜。使用能量最小化的分子建模方法,我们还确定了磷脂酰胆碱(PC)膜中C95的长轴大致平行于脂质双层的界面,并且头和尾基位于双层内部附近。相反,C95-P的磷酸酯头基团锚固在PC双层上,C95-P的长轴与双层界面之间的夹角约为758,从而产生了更垂直于C95-P平面的优选构象。双层。分子建模计算进一步揭示,多达五个PIRS肽可与单个PI分子协同结合,并且这种束缚结构具有形成膜通道的潜力。如果这样的通道存在于生物膜中,那么它可能在糖缀合物的转运中具有重要的功能,这一发现以前没有被报道过。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号