...
首页> 外文期刊>Current Protein & Peptide Science >NMR Studies on How the Binding Complex of Polyisoprenol Recognition Sequence Peptides and Polyisoprenols Can Modulate Membrane Structure
【24h】

NMR Studies on How the Binding Complex of Polyisoprenol Recognition Sequence Peptides and Polyisoprenols Can Modulate Membrane Structure

机译:聚异戊二烯识别序列肽和聚异戊二烯醇的结合复合物如何调节膜结构的NMR研究。

获取原文
获取原文并翻译 | 示例
           

摘要

The glycosyl carrier lipids, dolichylphosphate (C95-P) and undecapreylphosphate (C55-P) are key molecular players in the synthesis and translocation of complex glycoconjugates across cell membranes. The molecular mechanism of how these processes occur remains a mystery. Failure to completely catalyze C95-P-mediated N-linked protein glycosylation is lethal, as are defects in the C55-P-mediated synthesis of bacterial cell surface polymers. Our recent NMR studies have sought to understand the role these "super-lipids" play in biosynthetic and translocation pathways, which are of critical importance to problems in human biology and molecular medicine. The PIs can alter membrane structure by inducing in the lamellar phospholipids (PL) bilayer a non-lamellar or hexagonal (HexII) structure. Membrane proteins that bind PIs contain a transmembrane binding motif, designated a PI recognition sequence (PIRS). Herein we review our recent combination of 1H- and 31P NMR spectroscopy and energy minimized molecular modeling studies that have determined the preferred orientation of PIs in model phospholipids membranes. They also show that the addition of a PIRS peptide to nonlamellar membranes induced by the PIs can reverse the HexII phase back to a lamellar structure. Our molecular modeling calculations have also shown that as many as five PIRS peptides can bind to a single PI molecule. These findings lead to the hypothesis that the PI-induced HexII structure may have the potential of forming a membrane channel that could facilitate glycoconjugate translocation processes. This is an alternate hypothesis to the possible existence of hypothetical "flippases" to accomplish movement of hydrophilic sugar chains across hydrophobic membranes.
机译:糖基载体脂质,磷酸二烷基磷酸酯(C95-P)和十一碳十六烷基磷酸酯(C55-P)是复杂糖缀合物跨细胞膜合成和转运的关键分子。这些过程如何发生的分子机制仍然是一个谜。未能完全催化C95-P介导的N-连接的蛋白质糖基化是致命的,C55-P介导的细菌细胞表面聚合物合成中的缺陷也是如此。我们最近的NMR研究试图了解这些“超脂质”在生物合成和易位途径中的作用,这对于人类生物学和分子医学中的问题至关重要。 PI可以通过在层状磷脂(PL)双层中诱导非层状或六边形(HexII)结构来更改膜结构。结合PI的膜蛋白包含跨膜结合基序,称为PI识别序列(PIRS)。本文中,我们回顾了我们最近结合的1H-NMR和31P NMR光谱学和能量最小化分子建模研究,这些研究已经确定了模型磷脂膜中PI的优选取向。他们还表明,在PI诱导的非层状膜上添加PIRS肽可以使HexII相逆转为层状结构。我们的分子模型计算还表明,多达五个PIRS肽可与单个PI分子结合。这些发现导致以下假设:PI诱导的HexII结构可能具有形成膜通道的潜力,该膜通道可促进糖缀合物的转运过程。这是假设的“脂肪酶”可能存在以实现亲水性糖链跨疏水膜移动的另一种假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号