...
首页> 外文期刊>FEMS Yeast Research >Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis
【24h】

Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis

机译:工程啤酒酵母过表达内生Scheffersomyces stipitis的内源性醛糖还原酶(GRE3),木糖醇脱氢酶(XYL2)和木酮糖酶(XYL3)发酵木糖的可行性

获取原文
获取原文并翻译 | 示例
           

摘要

Saccharomyces cerevisiae has been engineered for producing ethanol from xylose, the second most abundant sugar in cellulosic biomass hydrolyzates. Heterologous expressions of xylose reductase (XYL1) and xylitol dehydrogenase (XYL2), or of xylose isomerase (xylA), either case of which being accompanied by overexpression of xylulokinase (XKS1 or XYL3), are known as the prevalent strategies for metabolic engineering of S.cerevisiae to ferment xylose. In this study, we propose an alternative strategy that employs overexpression of GRE3 coding for endogenous aldose reductase instead of XYL1 to construct efficient xylose-fermenting S.cerevisiae. Replacement of XYL1 with GRE3 has been regarded as an undesirable approach because NADPH-specific aldose reductase (GRE3) would aggravate redox balance with xylitol dehydrogenase (XYL2) using NAD+ exclusively. Here, we demonstrate that engineered S.cerevisiae overexpressing GRE3, XYL2, and XYL3 can ferment xylose as well as a mixture of glucose and xylose with higher ethanol yields (0.290.41gg1 sugars) and productivities (0.130.85gL1h1) than those (0.230.39gg1 sugars, 0.100.74gL1h1) of an isogenic strain overexpressing XYL1, XYL2, and XYL3 under oxygen-limited conditions. We found that xylose fermentation efficiency of a strain overexpressing GRE3 was dramatically increased by high expression levels of XYL2. Our results suggest that optimized expression levels of GRE3, XYL2, and XYL3 could overcome redox imbalance during xylose fermentation by engineered S.cerevisiae under oxygen-limited conditions.
机译:酿酒酵母已被设计用于从木糖生产乙醇,木糖是纤维素生物质水解产物中含量第二高的糖。木糖还原酶(XYL1)和木糖醇脱氢酶(XYL2)或木糖异构酶(xylA)的异源表达被公知为S代谢工程的普遍策略,这两种情况都伴有木酮糖激酶(XKS1或XYL3)的过表达。 .cerevisiae发酵木糖。在这项研究中,我们提出了一种替代策略,该策略采用过量表达GRE3的编码型内源性醛糖还原酶代替XYL1,以构建有效的木糖发酵酿酒酵母。用GRE3代替XYL1被认为是不受欢迎的方法,因为NADPH特异性醛糖还原酶(GRE3)仅使用NAD +会加剧木糖醇脱氢酶(XYL2)的氧化还原平衡。在这里,我们证明了工程化的酿酒酵母过表达GRE3,XYL2和XYL3可以发酵木糖以及葡萄糖和木糖的混合物,乙醇产率(0.290.41gg1糖)和生产率(0.130.85gL1h1)高于乙醇(0.230。 39gg1糖,0.100.74gL1h1)等氧菌株在氧气受限的条件下过表达XYL1,XYL2和XYL3。我们发现,过表达GRE3的菌株的木糖发酵效率通过XYL2的高表达水平而显着提高。我们的结果表明,优化的GRE3,XYL2和XYL3的表达水平可以克服在有限的氧气条件下工程化酿酒酵母在木糖发酵过程中的氧化还原失衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号