...
首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Laplace-Fourier-domain elastic full-waveform inversion using time-domain modeling
【24h】

Laplace-Fourier-domain elastic full-waveform inversion using time-domain modeling

机译:使用时域建模的Laplace-Fourier域弹性全波形反演

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To obtain subsurface information from onshore seismic exploration data using full-waveform inversion (FWI) based on the acoustic wave equation, elastic waves, such as ground roll and mode-converted waves, should be suppressed through heavy preprocessing. However, such preprocessing deforms not only the elastic waves but also the acoustic waves. Moreover, it is not easy to separate body waves from surface waves in seismic traces. For these reasons, we need to generate both types of waves in the modeling step to obtain seismic waves that are similar to real seismic waves. Therefore, elastic FWI using the elastic wave equation is necessary to achieve a more accurate FWI. In addition, elastic FWI can provide better geologic information than acoustic FWI because it inverts the P-wave velocity, S-wave velocity, and density. Laplace-Fourier-domain elastic FWI is an effective method because it inverts these multiple parameters and can be applied to real seismic data that lack low-frequency components. However, the conventional Laplace- Fourier-domain FWI requires a matrix solver with a huge memory cost to perform the modeling in the Laplace-Fourier-domain, and memory usage becomes more intensive in the elastic case. In the present study, we combined time-domain wave propagation modeling and Laplace-Fourier-domain elastic FWI to invert multiple parameters with less memory cost. By using time-domain modeling, which does not require a matrix solver, we obtained the forward and adjoint wavefields with lessmemory cost. The residuals between the recorded and modeled data, the virtual sources, the Hessian matrices, and the gradient directions were calculated in the Laplace-Fourier domain. To validate the proposed algorithm, we performed numerical tests with Model 94 synthetic data and Benjamin Creek real seismic data.
机译:为了使用基于声波方程的全波形反演(FWI)从陆上地震勘探数据中获取地下信息,应通过大量预处理来抑制弹性波,例如地滚波和模式转换波。然而,这种预处理不仅使弹性波变形而且使声波变形。此外,在地震道中将体波与表面波分离是不容易的。由于这些原因,我们需要在建模步骤中生成两种类型的波,以获得与真实地震波相似的地震波。因此,使用弹性波方程的弹性FWI对于获得更精确的FWI是必要的。另外,弹性FWI比声学FWI提供更好的地质信息,因为它会反转P波速度,S波速度和密度。 Laplace-Fourier域弹性FWI是一种有效的方法,因为它可以将这些多个参数求逆,并且可以应用于缺乏低频分量的真实地震数据。然而,常规的拉普拉斯-傅立叶域FWI需要具有巨大存储成本的矩阵求解器来在拉普拉斯-傅立叶域中执行建模,并且在弹性情况下,存储器的使用变得更加密集。在本研究中,我们将时域波传播建模与Laplace-Fourier域弹性FWI结合起来,以较少的存储成本来反转多个参数。通过使用不需要矩阵求解器的时域建模,我们以较少的存储器成本获得了前向和伴随波场。在Laplace-Fourier域中计算了记录和建模数据,虚拟源,Hessian矩阵和梯度方向之间的残差。为了验证所提出的算法,我们对94型合成数据和Benjamin Creek真实地震数据进行了数值测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号