首页> 外文会议>International Petroleum Technology Conference >Performances of 3D Frequency-Domain Full-Waveform Inversion Based on Frequency-Domain Direct-Solver and Time-Domain Modeling: Application to 3D OBC Data from the Valhall Field
【24h】

Performances of 3D Frequency-Domain Full-Waveform Inversion Based on Frequency-Domain Direct-Solver and Time-Domain Modeling: Application to 3D OBC Data from the Valhall Field

机译:基于频域直接求解器和时域建模的3D频域全波形反转的性能:应用于Valhall字段的3D OBC数据

获取原文

摘要

This study addresses the performances of different approaches to tackle 3D frequency-domain Full Waveform Inversion (FWI). FWI is becoming an appealing method to build high resolution velocity models from wide-azimuth seismic data. Three-dimensional frequency-domain solutions of the wave-equation for frequency-domain FWI can be computed with several methods. In the frequency domain, direct or iterative solvers can be used to solve the linear system resulting from the discretization of the wave equation. Alternatively, frequency responses can be computed by time-domain modeling coupled with discrete Fourier transform or phase-sensitive detection method. For a large number of seismic sources, the computational time of all of the methods scale along similar lines to the size of the problem, although the performances of the direct-solver approach is hampered by the limited scalability and the memory demand of the lower-upper decomposition of the forward- problem operator. We implement the direct-solver and the time-domain modeling approaches in 3D acoustic frequency-domain FWI, which is applied to real 3D wide-azimuth OBC data from the Valhall field, North Sea, at low frequencies (< 5 Hz). We show, for this case study, that even if less flexible for high-performance computing, the direct-solver approach is one order of magnitude more efficient in computing time/resources that the time-domain approach, if the signal-to-noise ratio in the data is sufficiently-high to limit the inversion to few frequencies. We finally discuss the performances, pros and cons of both methods, which depend on the wave physics (acoustic versus visco-acoustic, anisotropy, extension toward elastic or visco- elastic), the acquisition geometry (streamer-like versus fixed-spread acquisitions) and the computing architectures (small versus large amount of memory per computing node).
机译:本研究解决了解决3D频域全波形反转(FWI)的不同方法的性能。 FWI正在成为一种吸引人的方法,可以从宽方形地震数据构建高分辨率速度模型。可以用几种方法计算频域FWI的波浪方程的三维频域解。在频域中,可用于求解波动方程的离散化导致的线性系统。或者,可以通过与离散傅里叶变换或相位敏感检测方法耦合的时域建模来计算频率响应。对于大量地震来源,所有方法的计算时间沿着类似的线条到问题的大小,尽管直接求解方法的性能受到有限的可扩展性和下部的内存需求的阻碍。正向问题运营商的上分解。我们在3D声频域FWI中实现了直接求解器和时域建模方法,该方法应用于低频(<5 Hz)的Valhall字段中的真实3D宽方形OBC数据。我们展示了这种情况研究,即使对于高性能计算的灵活性而言,直接求解方法也是一个数量级,在计算时间/资源中更有效,即时域方法,如果是信号 - 噪声数据中的比率足够高,以限制频率的反转。我们终于讨论了两种方法的表演,优缺点,这取决于波理(声学与粘性,各向异性,延伸到弹性或粘弹性),采集几何(飘带式与固定差价采集)和计算架构(每个计算节点的小与大量内存)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号