首页> 外文期刊>Bulletin of the Korean Chemical Society >Eigenfunctions for Liouville Operators, Classical Collision Operators, and Collision Bracket Integrals in Kinetic Theory Made Amenable to Computer Simulations
【24h】

Eigenfunctions for Liouville Operators, Classical Collision Operators, and Collision Bracket Integrals in Kinetic Theory Made Amenable to Computer Simulations

机译:适用于计算机模拟的动力学理论中的Liouville算子,经典碰撞算子和碰撞支架积分的本征函数

获取原文
获取原文并翻译 | 示例
           

摘要

In the kinetic theory of dense fluids the many-particle collision bracket integral is given in terms of a classical collision operator defined in the phase space. To find an algorithm to compute the collision bracket integrals, we revisit the eigenvalue problem of the Liouville operator and re-examine the method previously reported [Chem. Phys. 1977, 20, 93]. Then we apply the notion and concept of the eigenfunctions of the Liouville operator and knowledge acquired in the study of the eigenfunctions to cast collision bracket integrals into more convenient and suitable forms for numerical simulations. One of the alternative forms is given in the form of time correlation function. This form, on a further manipulation, assumes a form reminiscent of the Chapman-Enskog collision bracket integrals, but for dense gases and liquids as well as solids. In the dilute gas limit it would give rise precisely to the Chapman-Enskog collision bracket integrals for two-particle collision. The alternative forms obtained are more readily amenable to numerical simulation methods than the collision bracket integrals expressed in terms of a classical collision operator, which requires solution of classical Lippmann-Schwinger integral equations. This way, the aforementioned kinetic theory of dense fluids is made fully accessible by numerical computation/simulation methods, and the transport coefficients thereof are made computationally as accessible as those in the linear response theory.
机译:在稠密流体的动力学理论中,多粒子碰撞支架积分是根据相空间中定义的经典碰撞算子给出的。为了找到一种计算碰撞括号积分的算法,我们回顾了Liouville算子的特征值问题,并重新检验了先前报道的方法[Chem。物理1977,20,93]。然后,我们使用Liouville算子的本征函数的概念和概念以及在本征函数研究中获得的知识,将碰撞括号积分转换为更方便,更适合的形式用于数值模拟。一种替代形式是以时间相关函数的形式给出的。在进一步处理时,此形式采用的形式让人联想到Chapman-Enskog碰撞支架积分,但适用于稠密的气体,液体以及固体。在稀薄气体极限中,恰好会产生两粒子碰撞的Chapman-Enskog碰撞支架积分。与以经典碰撞算子表示的碰撞支架积分相比,获得的替代形式更易于采用数值模拟方法,这需要经典Lippmann-Schwinger积分方程的解。这样,通过数值计算/模拟方法使得上述稠密流体的动力学理论变得完全可访问,并且其传输系数在计算上与线性响应理论中的那些一样容易访问。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号