首页> 外文期刊>sensors >Localization with Transfer Learning Based on Fine-Grained Subcarrier Information for Dynamic Indoor Environments
【24h】

Localization with Transfer Learning Based on Fine-Grained Subcarrier Information for Dynamic Indoor Environments

机译:基于细粒度副载波信息的动态室内环境迁移学习定位

获取原文
获取原文并翻译 | 示例

摘要

Indoor localization provides robust solutions in many applications, and Wi-Fi-based methods are considered some of the most promising means for optimizing indoor fingerprinting localization accuracy. However, Wi-Fi signals are vulnerable to environmental variations, resulting in data across different times being subjected to different distributions. To solve this problem, this paper proposes an across-time indoor localization solution based on channel state information (CSI) fingerprinting via multi-domain representations and transfer component analysis (TCA). We represent the format of CSI readings in multiple domains, extending the characterization of fine-grained information. TCA, a domain adaptation method in transfer learning, is applied to shorten the distribution distances among several CSI readings, which overcomes various CSI distribution problems at different time periods. Finally, we present a modified Bayesian model averaging approach to integrate the multi-domain outcomes and give the estimated positions. We conducted test-bed experiments in three scenarios on both personal computer (PC) and smartphone platforms in which the source and target fingerprinting data were collected across different days. The experimental results showed that our method outperforms state-of-the-art methods in localization accuracy.
机译:室内定位在许多应用中提供了强大的解决方案,基于Wi-Fi的方法被认为是优化室内指纹定位精度的一些最有前途的方法。然而,Wi-Fi 信号容易受到环境变化的影响,导致不同时间的数据受到不同的分布。针对该问题,该文提出一种基于信道状态信息(CSI)指纹图谱的跨时空室内定位解决方案,通过多域表示和传输分量分析(TCA)。我们在多个领域中表示 CSI 读数的格式,扩展了细粒度信息的表征。TCA是迁移学习中的一种域自适应方法,用于缩短多个CSI读数之间的分布距离,克服了不同时间段的各种CSI分布问题。最后,我们提出了一种改进的贝叶斯模型平均方法来整合多域结果并给出估计位置。我们在个人电脑(PC)和智能手机平台上的三个场景中进行了测试平台实验,其中收集了不同日期的源和目标指纹数据。实验结果表明,该方法的定位精度优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号