...
首页> 外文期刊>Genetics: A Periodical Record of Investigations Bearing on Heredity and Variation >Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress.
【24h】

Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress.

机译:在复制压力下,着丝粒复制的时间决定了酿酒酵母检查点突变体中基因组不稳定的不同形式。

获取原文
获取原文并翻译 | 示例

摘要

Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.
机译:酵母复制检查点突变体在短暂暴露于羟基脲(一种复制障碍药物)后丧失活力。为了了解这种致死性的基础,我们发现,不同事件是导致携带mec1和rad53基因突变的检查站缺陷型细胞中无生存力的原因。通过监测暴露于羟基脲的细胞的全基因组复制动态,我们显示具有RAD53的检查点缺陷等位基因rad53K227A的细胞无法复制着丝粒。然而,在去除药物后,rad53K227A细胞恢复了大量的DNA复制,包括通过着丝粒的复制。尽管有这种恢复,rad53K227A突变体在从羟基脲恢复过程中仍无法实现姊妹着丝粒的生物定向,从而导致纺锤体装配检查点(SAC)的二次激活,非整倍性和致命的染色体分离错误。我们证明了从这种分离缺陷的细胞致死性可以通过加强双极附着来部分弥补。相比之下,具有mec1-1 sml1-1突变的细胞在去除羟基脲后会严重破坏复制恢复。但是,mec1-1 sml1-1细胞可以复制其至少一些着丝粒并达到双极性附着,从而导致流产分离和不完全复制的染色体断裂。我们的结果突出了早期复制酵母着丝粒的重要性,并揭示了由于复制叉进程的差异而导致细胞死亡的不同机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号