...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides
【24h】

Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides

机译:海水和锰铁氧化物中钼的分布和同位素分馏的分子尺度机理

获取原文
获取原文并翻译 | 示例
           

摘要

The distribution of Mo between seawater and marine ferromanganese oxides has great impacts on concentration and isotopic composition of Mo in modern oxic seawater. To reveal the adsorption chemistry of Mo to ferromanganese oxides, we performed (i) detailed structural analyses of Mo surface complexes on δ-MnO_2, ferrihydrite, and hydrogenetic ferromanganese oxides by L_3- and K-edge XAFS, and (ii) adsorption experiments of Mo to δ-MnO_2 and ferrihydrite over a wide range of pHs, ionic strengths, and Mo concentrations. XAFS analyses revealed that Mo forms distorted octahedral (Oh) inner-sphere complexes on δ-MnO_2 whereas it forms a tetrahedral (Td) outer-sphere complex on ferrihydrite. In the hydrogenetic ferromanganese oxides, the dominant host phase of Mo was revealed to be δ-MnO_2. These structural information are consistent with the macroscopic behaviors of Mo in adsorption experiments, and Mo concentration in modern oxic seawater can be explained by the equilibrium adsorption reaction on δ-MnO_2. In addition, the large isotopic fractionation of Mo between seawater and ferromanganese oxides detected in previous studies can be explained by the structural difference between MoO42- and adsorbed species on the δ-MnO_2 phase in ferromanganese oxides. In contrast, smaller fractionation of Mo isotopes on ferrihydrite is due to little change in the Mo local structures during its adsorption to ferrihydrite. The structures of Mo species adsorbed on crystalline Fe (oxyhydr)oxides, goethite, and hematite were also investigated at pH 8 and I=0.70M (NaNO_3). Our XAFS analyses revealed that Mo forms inner-sphere complexes on both minerals: Td edge-sharing (46%) and Oh double corner-sharing (54%) for goethite, and Td double corner-sharing (14%) and Oh edge-sharing (86%) for hematite. These structural information, combined with those for amorphous ferrihydrite and δ-MnO_2, show the excellent correlation with the magnitude of adsorptive isotopic fractionation of Mo reported in previous studies: the proportion of Oh species or their magnitude of distortion in Mo surface complexes become larger in the order of ferrihydrite
机译:海水和海洋锰铁氧化物中Mo的分布对现代含氧海水中Mo的浓度和同位素组成有很大影响。为了揭示钼在锰铁氧化物上的吸附化学,我们进行了(i)通过L_3-和K-edge XAFS对δ-MnO_2,水铁矿和氢化锰铁氧化物上的钼表面配合物进行详细的结构分析,以及(ii)钼的吸附实验。在很宽的pH值,离子强度和Mo浓度范围内,Mo变成δ-MnO_2和三水铁矿。 XAFS分析表明,Mo在δ-MnO_2上形成扭曲的八面体(Oh)内球络合物,而在三水铁矿上形成四面体(Td)的外球络合物。在氢化锰铁氧化物中,Mo的主要主体相显示为δ-MnO_2。这些结构信息与钼在吸附实验中的宏观行为是一致的,现代氧氧化海水中的钼浓度可以通过在δ-MnO_2上的平衡吸附反应来解释。此外,先前研究中发现的海水和氧化锰铁之间Mo的较大同位素分馏可以通过氧化锰铁中MoO42-和δ-MnO_2相上吸附物种之间的结构差异来解释。相比之下,亚铁酸盐上Mo同位素的较小分馏是由于在Mo吸附到亚铁酸盐上时Mo局部结构几乎没有变化。还研究了在pH 8和I = 0.70M(NaNO_3)时,Mo物种吸附在结晶的Fe(羟基)氧化物,针铁矿和赤铁矿上的结构。我们的XAFS分析表明,钼在两种矿物上均形成内球复合体:针铁矿的Td边共享(46%)和Oh双角共享(54%),Td的双角共享(14%)和Oh边缘-占赤铁矿的86%。这些结构信息,再加上无定形亚铁水合物和δ-MnO_2的信息,显示了与先前研究中报道的Mo吸附同位素分馏程度的极好相关性:在Mo中,Oh种类的比例或它们的畸变幅度变大。水铁矿<针铁矿<赤铁矿<δ-MnO_2的顺序,其趋势与同位素分馏的幅度相同。在与以前关于各种氧化物上的钼表面物质的报道进行比较的基础上,还讨论了影响钼表面复杂结构的化学因素。阳离子在氧化物中的水解常数logK_(OH)(或氧化物表面的酸度,PZC)与Mo表面络合物的附着方式(内层或外层)紧密相关。此外,Mo物种从Td到Oh的对称变化被认为是由在氧化物表面特定位置上形成的内球络合物驱动的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号