首页> 外文期刊>Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics >Very-low-Re chaotic motions of viscoelastic fluid and its unique applications in microfluidic devices: A review
【24h】

Very-low-Re chaotic motions of viscoelastic fluid and its unique applications in microfluidic devices: A review

机译:粘弹性流体的极低Re混沌运动及其在微流控设备中的独特应用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper presents a comprehensive review on the peculiar phenomena of elasticity-induced instabilities, transition to turbulence and elastic turbulence in very low Reynolds number (Re) viscoelastic fluids flows, as well as their particular applications of those viscoelasticity-induced phenomena in microfluidic devices. It is well-known that the addition of polymers or surfactants additives into normal solvents (like water) can make the solutions show remarkable viscoelastic properties, which are varying with the additives concentration and temperature. The elasticity of the solution stems from the flexible molecular chains, which can be stretched or reassemble themselves in fluid motion, and hereby induce the flow instabilities due to the initial perturbation. These instabilities are common in the flow devices with curvilinear streamlines, such as Taylor-Couette geometry, cone-and-plate geometry and plate-and-plate geometry, and all occur at relatively low-Re, hence called elastic instabilities. In microscopic flow, Re is naturally quite low and the flow is definitely laminar for Newtonian fluids. Nevertheless, flow instabilities, even chaotic flow patterns happen for viscoelastic fluids, provided the fluid elasticity is strong enough. For a practical purpose, triggering elastic instabilities or turbulence in the microchannel devices will be favorable for mixing enhancement, reaction acceleration and potential heat transfer enhancement, which are usually limited by the laminar flow nature greatly. Using viscoelastic fluid coupling to curvatures of geometry, the low-Re irregular flow behaves counter-intuitively compared with normal fluids and can functionally work in particularly designed microfluidic devices. With wide applications of microfluidics in the fields of chemical science, medical engineering and biotechnology, etc., and combination with microfabrication technology, the instabilities' occurrence and applications will be a promising way for functional microchip design with multipurpose. Till now, though huge developments in microfluidics using viscoelastic fluid flow have been achieved, challenges and research interests still remain for the future.
机译:本文对在极低的雷诺数(Re)粘弹性流体流中由弹性引起的不稳定性,过渡到湍流和弹性湍流的特殊现象,以及这些由粘弹性引起的现象在微流体装置中的特殊应用进行了全面的综述。众所周知,将聚合物或表面活性剂添加剂添加到普通溶剂(如水)中可使溶液显示出显着的粘弹性,该粘度随添加剂的浓度和温度而变化。溶液的弹性源自柔性分子链,柔性分子链可以在流体运动中被拉伸或重新组装,因此由于初始扰动而引起流动不稳定性。这些不稳定性在具有曲线流线的流动设备中很常见,例如泰勒-库埃特几何形状,锥板几何形状和板板几何形状,并且都以相对较低的Re发生,因此称为弹性不稳定性。在微观流动中,Re自然很低,对于牛顿流体,流动绝对是层流的。但是,如果流体的弹性足够强,则粘弹性流体会发生流动不稳定性,甚至发生混乱的流动模式。出于实际目的,在微通道装置中触发弹性不稳定性或湍流将有利于混合增强,反应加速和潜在的传热增强,这通常受到层流性质的极大限制。通过使用粘弹性流体耦合到几何曲率,低irregular不规则流动与常规流体相比具有反直觉的行为,并且可以在特别设计的微流体设备中发挥功能。随着微流控技术在化学,医学工程和生物技术等领域的广泛应用,并与微加工技术相结合,不稳定性的发生和应用将成为多用途功能微芯片设计的有前途的途径。到现在为止,尽管使用粘弹性流体流的微流体技术已经取得了巨大的发展,但未来仍然存在挑战和研究兴趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号