首页> 外文学位 >Manipulations of viscoelastic instability and interfacial surface forces in microfluidics devices for biomedical and material science applications.
【24h】

Manipulations of viscoelastic instability and interfacial surface forces in microfluidics devices for biomedical and material science applications.

机译:用于生物医学和材料科学应用的微流控设备中的粘弹性不稳定性和界面表面力的操纵。

获取原文
获取原文并翻译 | 示例

摘要

As a highly viscoelastic liquid, flowing blood exerts a shearing force that has a significant effect on the functioning of vascular endothelial cells (ECs), which regulates the human circulatory system. The first part of the thesis describes a microfluidic device along with a specially formulated media to provide an in-vitro testing microenvironment where cultured endothelial cell layers can be subjected to shearing forces from both stable and unstable flows. Complex and unstable flow patterns are generated within this microchannel device by engineering the viscoelastic properties of the EC culture media without the need of an extensive flow agitation apparatus. In-vitro shearing tests showed significant differences in the responses of Human Umbilical Vein Endothelial Cell (HUVEC) layers to laminar stable and complex unstable flows. The second part of the thesis describes a microfluidic method to generate uniform-sized polydimethylsiloxane (PDMS) microspheres over a size range of 85--200 microns by manipulation of the microchannel two-phase flow. Viscous PDMS prepolymer is pushed out of the middle channel of a 3-inlet-1-outlet converging microchannel flanked on each side by flow of an aqueous surfactant solution. Unique surface crack patterns are generated on the surfaces of PDMS microspheres, and they are decorated by coating them with fluorescent protein and gold nanoparticles, which could be further enhanced into gold or silver nanowires. The unique ability to generate controllable selective 3D deposition patterns on PDMS microspheres introduces a new class of microscale functional materials, and provides opportunities for a multitude of material science and biomedical applications. Finally, the effect of channel surface properties on air-liquid two-phase flows and plug flows in a microchannel are investigated. Manipulation of the surface properties creates a several distinct flow regimes in a Y-shaped microchannel; and affects different plug propagation conditions in a K-shaped design, with important clinical implications for pulmonary air cell injury.
机译:作为一种高度粘弹性的液体,流动的血液会产生剪切力,该剪切力对调节人体循环系统的血管内皮细胞(EC)的功能产生重大影响。论文的第一部分描述了一种微流体装置以及一种特殊配制的介质,以提供体外测试微环境,在该环境中,培养的内皮细胞层可能会受到来自稳定和不稳定流的剪切力的影响。通过设计EC培养基的粘弹性质,无需大量的流动搅拌设备,即可在此微通道设备内产生复杂且不稳定的流动模式。体外剪切测试显示,人脐静脉内皮细胞(HUVEC)层对层流稳定和复杂不稳定流动的响应存在显着差异。论文的第二部分描述了一种微流体方法,通过操纵微通道两相流来产生尺寸范围为85--200微米的均匀尺寸的聚二甲基硅氧烷(PDMS)微球。通过表面活性剂水溶液的流动,将粘性PDMS预聚物从侧面两侧的3入口1出口汇聚微通道的中间通道推出。 PDMS微球表面上会产生独特的表面裂纹图案,并通过在其上涂上荧光蛋白和金纳米颗粒进行装饰,可以将其进一步增强为金或银纳米线。在PDMS微球上生成可控的选择性3D沉积图案的独特能力引入了一类新型的微尺度功能材料,并为多种材料科学和生物医学应用提供了机会。最后,研究了通道表面特性对微通道中气液两相流和塞流的影响。操纵表面特性会在Y形微通道中创建几种不同的流动方式;并以K形设计影响不同的栓塞繁殖条件,对肺气细胞损伤具有重要的临床意义。

著录项

  • 作者

    Kuo, Chuan-Hsien.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号