...
首页> 外文期刊>Environmental microbiology >The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism
【24h】

The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism

机译:氢和甲酸酯转移对脂肪代谢,芳香族和脂环族代谢的重要性

获取原文
获取原文并翻译 | 示例

摘要

We used a combination of genomic, transcriptional and enzymatic analyses to determine the mechanism of interspecies electron transfer by two model syntrophic microorganisms, Syntrophomonas wolfei and Syntrophus aciditrophicus. Both organisms contain multiple hydrogenase and formate dehydrogenase genes, but lack genes for outer membrane cytochromes and nanowire formation. Syntrophically grown cells and cell-free extracts of S. aciditrophicus and S. wolfei had both hydrogenase and formate dehydrogenase activities. Butyrate metabolism and CH_4 production by washed cell suspensions of S. wolfei and Methanospirillum hungatei were inhibited by hydrogenase inhibitors (cyanide and carbon monoxide), but not by a formate dehydrogenase inhibitor (hypophosphite). Syntrophic benzoate oxidation and CH_4 production by washed cell suspensions of S. aciditrophicus and M. hungatei were inhibited by hypophosphite, but not cyanide and carbon monoxide. All three inhibitors halted syntrophic cyclohexane-1-carboxylate metabolism. Two hydrogenase genes, hydA1 and hydA2, were more highly expressed when S. wolfei was grown syntrophically. S. aciditrophicus expressed multiple hydrogenase and formate dehydrogenase genes during syntrophic benzoate and cyclohexane-1-carboxylate growth, one of which (fdhA2) was highly differentially expressed during syntrophic benzoate growth. Thus, these syntrophic microorganisms have flexible metabolisms that allow them to use either H_2 or formate transfer depending on the substrate involved.
机译:我们使用基因组,转录和酶学分析的组合来确定两种模式同养微生物,Syntrophomonas wolfei和Syntrophus aciditrophicus种间电子转移的机制。两种生物均包含多个氢化酶和甲酸盐脱氢酶基因,但缺乏外膜细胞色素和纳米线形成的基因。酸性生长的嗜盐链霉菌和沃尔夫链霉菌的营养生长细胞和无细胞提取物均具有氢化酶和甲酸脱氢酶活性。洗涤后的沃尔夫链霉菌和杭甲基甲烷螺旋菌细胞悬浮液的丁酸酯代谢和CH_4的产生受氢酶抑制剂(氰化物和一氧化碳)的抑制,但不受甲酸盐脱氢酶抑制剂(次磷酸盐)的抑制。次磷酸酯可抑制亚营养的S. acidtrophicus和H. Hangatei的细胞悬浮液对苯甲酸的氧化和CH_4的生成,但对氰化物和一氧化碳没有抑制作用。所有这三种抑制剂均停止了同养环己-1-羧酸酯的代谢。当S. wolfei合成生长时,两个氢化酶基因hydA1和hydA2更高表达。酸性营养链霉菌在同养苯甲酸和环己烷-1-羧酸生长期间表达了多个氢化酶和甲酸脱氢酶基因,其中之一(fdhA2)在同养苯甲酸的生长过程中高度差异表达。因此,这些同养微生物具有灵活的新陈代谢,使其能够根据涉及的底物使用H_2或甲酸转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号