首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Control of Interspecies Electron Flow during Anaerobic Digestion: Significance of Formate Transfer versus Hydrogen Transfer during Syntrophic Methanogenesis in Flocs
【2h】

Control of Interspecies Electron Flow during Anaerobic Digestion: Significance of Formate Transfer versus Hydrogen Transfer during Syntrophic Methanogenesis in Flocs

机译:厌氧消化过程中种间电子流的控制:絮凝体甲烷化过程中形态转移与氢转移的意义

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microbial formate production and consumption during syntrophic conversion of ethanol or lactate to methane was examined in purified flocs and digestor contents obtained from a whey-processing digestor. Formate production by digestor contents or purified digestor flocs was dependent on CO2 and either ethanol or lactate but not H2 gas as an electron donor. During syntrophic methanogenesis, flocs were the primary site for formate production via ethanol-dependent CO2 reduction, with a formate production rate and methanogenic turnover constant of 660 μM/h and 0.044/min, respectively. Floc preparations accumulated fourfold-higher levels of formate (40 μM) than digestor contents, and the free flora was the primary site for formate cleavage to CO2 and H2 (90 μM formate per h). Inhibition of methanogenesis by CHCl3 resulted in formate accumulation and suppression of syntrophic ethanol oxidation. H2 gas was an insignificant intermediary metabolite of syntrophic ethanol conversion by flocs, and its exogenous addition neither stimulated methanogenesis nor inhibited the initial rate of ethanol oxidation. These results demonstrated that >90% of the syntrophic ethanol conversion to methane by mixed cultures containing primarily Desulfovibrio vulgaris and Methanobacterium formicicum was mediated via interspecies formate transfer and that <10% was mediated via interspecies H2 transfer. The results are discussed in relation to biochemical thermodynamics. A model is presented which describes the dynamics of a bicarbonate-formate electron shuttle mechanism for control of carbon and electron flow during syntrophic methanogenesis and provides a novel mechanism for energy conservation by syntrophic acetogens.
机译:在纯化的絮状物中和从乳清工艺消化池中得到的消化池内容物中,检查了乙醇或乳酸从合成转化为甲烷期间微生物甲酸的产生和消耗。通过消化器内容物或纯化的消化器絮凝物产生的甲酸盐取决于CO2和乙醇或乳酸盐,但不取决于作为电子供体的H2气体。在营养化甲烷化过程中,絮凝物是通过乙醇依赖性CO2还原而产生甲酸的主要场所,其甲酸产生速率和产甲烷周转常数分别为660μM/ h和0.044 / min。絮凝制剂的甲酸盐(40μM)含量比消化液含量高四倍,游离菌群是甲酸盐裂解成CO2和H2的主要位点(每小时90μM甲酸盐)。 CHCl3抑制甲烷生成,导致甲酸积累并抑制同养乙醇氧化。 H 2气是絮凝物转化合成乙醇的微不足道的中间代谢物,其外源添加既不会刺激甲烷生成,也不会抑制乙醇氧化的初始速率。这些结果表明,通过主要包含寻常脱硫弧菌和甲酸甲烷杆菌的混合培养物,> 90%的同养乙醇转化为甲烷是通过种间甲酸盐转移介导的,<10%是通过种间H2转移介导的。讨论了有关生化热力学的结果。提出了一个模型,该模型描述了碳酸氢盐-甲酸电子穿梭机理的动力学,以控制营养化甲烷生成过程中的碳和电子流,并提供了一种通过营养化产乙酸酶进行节能的新机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号