...
首页> 外文期刊>Applied and Environmental Microbiology >Control of Interspecies Electron Flow during Anaerobic Digestion: Role of Floc Formation in Syntrophic Methanogenesis
【24h】

Control of Interspecies Electron Flow during Anaerobic Digestion: Role of Floc Formation in Syntrophic Methanogenesis

机译:厌氧消化过程中种间电子流的控制:絮凝物形成在营养甲烷化中的作用。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The flora of an anaerobic whey-processing chemostat was separated by anaerobic sedimentation techniques into a free-living bacterial fraction and a bacterial floc fraction. The floc fraction constituted a major part (i.e., 57% total protein) of the total microbial population in the digestor, and it accounted for 87% of the total CO2-dependent methanogenic activity and 76% of the total ethanol-consuming acetogenic activity. Lactose was degraded by both cellular fractions, but in the free flora fraction it was associated with higher intermediary levels of H2, ethanol, butyrate, and propionate production. Electron microscopic analysis of flocs showed bacterial diversity and juxtapositioning of tentative Desulfovibrio and Methanobacterium species without significant microcolony formation. Ethanol, an intermediary product of lactose-hydrolyzing bacteria, was converted to acetate and methane within the flocs by interspecies electron transfer. Ethanol-dependent methane formation was compartmentalized and closely coupled kinetically within the flocs but without significant formation of H2 gas. Physical disruption of flocs into fragments of 10- to 20-μm diameter initially increased the H2 partial pressure but did not change the carbon transformation kinetic patterns of ethanol metabolism or demonstrate a significant role for H2 in CO2 reduction to methane. The data demonstrate that floc formation in a whey-processing anaerobic digestor functions in juxtapositioning cells for interspecies electron transfer during syntrophic ethanol conversion into acetate and methane but by a mechanism which was independent of the available dissolved H2 gas pool in the ecosystem.
机译:通过厌氧沉淀技术将厌氧乳清处理的恒化器的菌群分离为自由生活的细菌级分和细菌絮凝级分。絮凝物部分构成消化器中微生物总数的主要部分(即总蛋白质的57%),占CO2依赖的甲烷生成总量的87%和乙醇消耗总量的76%产乙酸活性。乳糖被两个细胞级分降解,但是在游离菌群级分中,它与较高的中间水平的H2,乙醇,丁酸盐和丙酸盐生产有关。絮凝物的电子显微镜分析表明,细菌的多样性以及试探性脱硫弧菌和甲烷菌的并置没有明显的小菌落形成。乙醇是乳糖水解细菌的中间产物,通过种间电子转移在絮凝物中转化为乙酸盐和甲烷。乙醇依赖性甲烷的形成在絮凝物中被分隔开并在动力学上紧密耦合,但没有明显形成氢气。絮凝物物理破碎成直径为10至20μm的碎片最初会增加H2分压,但不会改变乙醇代谢的碳转化动力学模式,也没有显示H2在将CO2还原为甲烷方面的重要作用。数据表明,乳清处理厌氧消化池中的絮凝物形成在并置的细胞中起作用,以将合成乙醇转化为乙酸盐和甲烷期间的种间电子转移,但其机理与生态系统中可用的溶解H2气库无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号