首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >Coarse grained model for exploring voltage dependent ion channels
【24h】

Coarse grained model for exploring voltage dependent ion channels

机译:粗粒模型用于探索电压依赖性离子通道

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The relationship between the membrane voltage and the gating of voltage activated ion channels and other systems have been a problem of great current interest. Unfortunately, reliable molecular simulations of external voltage effects present a major challenge, since meaningful converging microscopic simulations are not yet available and macroscopic treatments involve major uncertainties in terms of the dielectric used and other key features. This work extends our coarse grained (CG) model to simulations of membrane/protein systems under external potential. Special attention is devoted to a consistent modeling of the effect of external potential due to the electrodes, emphasizing semimacroscopic description of the electrolytes in the solution regions between the membranes and the electrodes, as well as the coupling between the combined potential from the electrodes plus the electrolytes and the protein ionized groups. We also provide a clear connection to microscopic treatment of the electrolytes and thus can explore possible conceptual problems that are hard to resolve by other current approaches. For example, we obtain a clear description of the charge distribution in the entire electrolyte system, including near the electrodes in membrane/electrodes systems (where continuum models do not seem to provide the relevant results). Furthermore, the present treatment provides an insight on the distribution of the electrolyte charges before and after equilibration across the membrane, and thus on the nature of the gating charge. The different aspects of the model have been carefully validated by considering problems ranging for the simple Debye-Huckel, and the Gouy-Chapman models to the evaluation of the electrolyte distribution between two electrodes, as well as the effect of extending the simulation system by periodic replicas. Overall the clear connection to microscopic descriptions combined with the power of the CG modeling seems to offer a powerful tool for exploring the balance between the protein conformational energy and the interaction with the external potential in voltage activated channels. To illustrate these features we present a preliminary study of the gating charge in the voltage activated Kv1.2 channel, using the actual change in the electrolyte charge distribution rather than the conventional macroscopic estimate. We also discuss other special features of the model, which include the ability to capture the effect of changes in the protonation states of the protein residues during the close to open voltage induced transition. This article is part of a Special Issue entitled: Membrane protein structure and function.
机译:膜电压与电压激活的离子通道和其他系统的门控之间的关系一直是引起人们极大关注的问题。不幸的是,可靠的外部电压效应分子模拟提出了一个重大挑战,因为尚无法获得有意义的会聚微观模拟,并且宏观处理在所用介电质和其他关键特性方面存在重大不确定性。这项工作将我们的粗粒(CG)模型扩展到在外部电势下模拟膜/蛋白质系统。特别注意的是对由于电极引起的外部电势的影响进行一致的建模,重点是对膜和电极之间溶液区域中电解质的半宏观描述,以及来自电极和电势的组合电势之间的耦合。电解质和蛋白质离子化基团。我们还为电解质的微观处理提供了明确的联系,因此可以探索可能难以用其他当前方法解决的概念问题。例如,我们获得了整个电解质系统中电荷分布的清晰描述,包括膜/电极系统中的电极附近(其中连续介质模型似乎未提供相关结果)。此外,本发明的方法提供了关于在整个膜上平衡之前和之后电解质电荷的分布的见解,从而提供了对门控电荷的性质的见解。通过考虑简单Debye-Huckel的问题范围以及Gouy-Chapman模型对两个电极之间的电解质分布进行评估以及通过周期性扩展模拟系统的效果,已仔细验证了模型的不同方面副本。总的来说,与微观描述的清晰联系以及CG模型的强大功能似乎为探索蛋白质构象能与电压激活通道中与外部电位的相互作用之间的平衡提供了强大的工具。为了说明这些特征,我们使用电解质电荷分布的实际变化而不是常规的宏观估计,对电压激活的Kv1.2通道中的门控电荷进行了初步研究。我们还讨论了该模型的其他特殊功能,包括在接近开路电压引起的过渡过程中捕获蛋白质残基质子化状态变化的影响的能力。本文是名为“膜蛋白结构和功能”的特刊的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号