...
首页> 外文期刊>Biochimica et biophysica acta. Bioenergetics >Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome bc. Implications for the mechanism of superoxide production.
【24h】

Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome bc. Implications for the mechanism of superoxide production.

机译:区分可能导致细胞色素bc产生有害自由基的两个可能反应序列。对超氧化物产生机理的影响。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In addition to its bioenergetic function of building up proton motive force, cytochrome bc can be a source of superoxide. One-electron reduction of oxygen is believed to occur from semiquinone (SQ(o)) formed at the quinone oxidation/reduction Q(o) site (Q(o)) as a result of single-electron oxidation of quinol by the iron-sulfur cluster (FeS) (semiforward mechanism) or single-electron reduction of quinone by heme b(L) (semireverse mechanism). It is hotly debated which mechanism plays a major role in the overall production of superoxide as experimental data supporting either reaction exist. To evaluate a contribution of each of the mechanisms we first measured superoxide production under a broad range of conditions using the mutants of cytochrome bc that severely impeded the oxidation of FeS by cytochrome c, changed density of FeS around Q(o) by interfering with its movement, or combined these two effects together. We then compared the amount of generated superoxide with mathematical models describing either semiforward or semireverse mechanism framed within a scheme assuming competition between the internal reactions at Q(o) and the leakage of electrons on oxygen. We found that only the model of semireverse mechanism correctly reproduced the experimentally measured decrease in ROS for the FeS motion mutants and increase in ROS for the mutants with oxidation of FeS impaired. This strongly suggests that this mechanism dominates in setting steady-state levels of SQ(o) that present a risk of generation of superoxide by cytochrome bc. Isolation of this reaction sequence from multiplicity of possible reactions at Q(o) helps to better understand conditions under which complex III might contribute to ROS generation in vivo.
机译:细胞色素bc除了具有增强质子原动力的生物能功能外,还可以作为超氧化物的来源。氧的单电子还原被认为是由于在醌氧化/还原Q(o)位置(Q(o))上形成的半醌(SQ(o))发生的,这是由于铁对喹诺尔的单电子氧化所致。硫簇(FeS)(半正向机理)或血红素b(L)引起的醌单电子还原(半反向机理)。由于存在支持任一反应的实验数据,因此激烈辩论哪种机制在超氧化物的整体生产中起主要作用。为了评估每种机制的作用,我们首先在广泛的条件下使用细胞色素bc突变体在很宽的条件下测量了超氧化物的产生,该突变体严重阻碍了细胞色素c氧化FeS,通过干扰其Q(o)改变了FeS的密度。运动,或将这两种效果结合在一起。然后,我们将生成的超氧化物的量与描述假设在Q(o)的内部反应与电子在氧气上的泄漏之间存在竞争的方案中描述的半正向或半反向机制的数学模型进行了比较。我们发现,只有半反向机理模型才能正确再现实验测量的FeS运动突变体的ROS降低和ROS升高(对于FeS氧化受损的突变体)。这有力地表明,该机制在设定SQ(o)的稳态水平方面起主导作用,而SQ(o)的水平则存在细胞色素bc产生超氧化物的风险。从多个可能的反应在Q(o)中分离出此反应序列有助于更好地了解复合物III在体内可能促进ROS产生的条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号