...
首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >Ionization properties of mixed lipid membranes: a Gouy-Chapman model of the electrostatic-hydrogen bond switch.
【24h】

Ionization properties of mixed lipid membranes: a Gouy-Chapman model of the electrostatic-hydrogen bond switch.

机译:混合脂质膜的电离特性:静电氢键开关的Gouy-Chapman模型。

获取原文
获取原文并翻译 | 示例

摘要

The dissociation state of phosphatidic acid (PA) in a lipid bilayer is governed by the competition of proton binding and formation of a hydrogen bond through a mechanism termed the electrostatic-hydrogen bond switch. This mechanism has been suggested to provide the basis for the specific recognition of PA by proteins. Even in bare lipid bilayers the electrostatic-hydrogen bond switch is present if the membrane contains lipids like phosphatidylethanolamine that act as hydrogen bond donors. In this case, the dissociation state (pK(a)) of PA depends strongly on membrane composition. In the present work we incorporate the electrostatic-hydrogen bond switch mechanism into the Gouy-Chapman model for a membrane that is composed of PA and a hydrogen bond-donating zwitterionic lipid. To this end, our model integrates into the Gouy-Chapman approach a recently suggested electrostatic model for zwitterionic lipids. Hydrogen bond formation is incorporated phenomenologically as an additional non-electrostatic interaction between the phosphomonoester headgroup of PA and the zwitterionic lipid headgroup. We express the energetics of the composite membrane in terms of a free energy functional whose minimization leads to a modified non-linear Poisson-Boltzmann equation that we have solved numerically. Our calculations focus on the influence of the membrane environment on the dissociation state of PA. This influence can be expressed as a shift of the second pK(a) of PA, which we calculate as function of membrane composition, following experimental observation. The shift is large and negative if PA is the minor component in the membrane, and it changes over four pH units as function of the mole fraction of PA in the membrane. In contrast, the shift of the second pK(a) of PA remains small and is always positive if the zwitterionic lipid is unable to act as hydrogen bond donor. Hence, we find that the electrostatic-hydrogen bond switch mechanism regulates the dissociation state of PA with much greater sensitivity than would be possible based on a pure electrostatic regulation through the membrane potential.
机译:脂质双层中磷脂酸(PA)的解离状态受质子结合竞争和通过称为静电-氢键转换的机制形成氢键的竞争控制。已经提出该机制为蛋白质特异性识别PA提供基础。即使在裸露的脂质双层中,如果膜中包含诸如磷脂酰乙醇胺之类的脂质作为氢键供体,也会存在静电-氢键转换。在这种情况下,PA的解离状态(pK(a))很大程度上取决于膜的组成。在目前的工作中,我们将静电-氢键切换机制纳入了由PA和提供氢键的两性离子脂质组成的膜的Gouy-Chapman模型中。为此,我们的模型整合到Gouy-Chapman方法中,该方法是最近建议的两性离子脂质的静电模型。氢键形成在现象学上作为PA的磷酸单酯头基与两性离子脂质头基之间的另一种非静电相互作用被并入。我们用自由能函数表示复合膜的能量,自由能函数的最小化导致我们已经数值求解的改进的非线性Poisson-Boltzmann方程。我们的计算集中在膜环境对PA分解状态的影响上。这种影响可以表示为PA的第二个pK(a)的位移,我们根据实验观察结果将其计算为膜成分的函数。如果PA是膜中的次要成分,则该变化较大且为负值,并且该变化超过四个pH单位,这是膜中PA摩尔分数的函数。相比之下,PA的第二个pK(a)的位移仍然很小,并且如果两性离子脂质无法充当氢键供体,则该位移始终为正。因此,我们发现,静电-氢键转换机制以比通过膜电位的纯静电调节可能的灵敏度高得多的灵敏度调节PA的解离状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号