首页> 外文期刊>Energy Technology: Generation,Conversion,Storage,Distribution >How to Overcome the Water-Gas-Shift Equilibrium using a Conventional Nickel Reformer Catalyst
【24h】

How to Overcome the Water-Gas-Shift Equilibrium using a Conventional Nickel Reformer Catalyst

机译:如何使用常规的镍重整器催化剂克服水煤气变换平衡

获取原文
获取原文并翻译 | 示例
           

摘要

The catalytic water-gas-shift (WGS) reaction into hydrogen and carbon dioxide was investigated using a commercial nickel reformer catalyst. The effects of temperature, flow rate, and catalyst nature on the course of reaction were evaluated. Hydrogen and carbon dioxide were generated in the temperature range between 125 and 475 degrees C. A reaction scheme was used to explain the formation of methane. The WGS reaction and the methanation reaction (MTN) were used to calculate the equilibrium composition at these conditions. A commercial hydrotalcite-like sorbent arranged in a multilayer pattern of catalyst plus sorbent was used for carbon dioxide capture to enhance the WGS reaction. The performance of the catalyst was assessed by comparing the measured conversions, hydrogen yields, and selectivities at steady-state conditions with equilibrium values and with selected results reported recently, as well as conversions, hydrogen yields, and selectivities during the transient period as the hybrid system consisting of catalyst plus sorbent is arranged in a multilayer pattern system. The multilayer pattern system consisting of catalyst plus sorbent can easily overcome the thermodynamic restrictions of the WGS reaction at an operating temperature of 400 degrees C because of the enhanced sorption effect during the reaction process. In addition, lower flow rate regimes, and higher pressures and steam/carbon ratios increase the initial breakthrough period. This sorption-enhanced technique makes the use of Ni-based catalysts for the WGS reaction attractive, and suitable for the adjustment of the hydrogen ratio in synthesis gas streams.
机译:使用商业化的镍重整催化剂研究了催化的水煤气变换(WGS)反应成氢气和二氧化碳的反应。评估了温度,流速和催化剂性质对反应过程的影响。氢气和二氧化碳在125到475摄氏度之间的温度范围内生成。反应方案用于解释甲烷的形成。在这些条件下,使用WGS反应和甲烷化反应(MTN)来计算平衡组成。使用以催化剂加吸附剂的多层图案排列的市售类水滑石吸附剂用于二氧化碳捕集以增强WGS反应。通过将稳态条件下测得的转化率,氢产率和选择性与平衡值和最近报道的选定结果进行比较,以及在过渡期间作为混合燃料的转化率,氢产率和选择性,来评估催化剂的性能。由催化剂加吸附剂组成的系统布置在多层图案系统中。由催化剂加吸附剂组成的多层图案系统可以轻松克服WGS反应在400摄氏度的工作条件下的热力学限制,因为在反应过程中吸附效果增强。另外,较低的流速范围,较高的压力和蒸汽/碳比会增加初始穿透时间。这种吸附增强技术使用于WGS反应的Ni基催化剂具有吸引力,并且适合于调节合成气流中的氢比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号