首页> 外文期刊>Investigative ophthalmology & visual science >Assessing visual field clustering schemes using machine learning classifiers in standard perimetry.
【24h】

Assessing visual field clustering schemes using machine learning classifiers in standard perimetry.

机译:使用标准视野检查中的机器学习分类器评估视野聚类方案。

获取原文
获取原文并翻译 | 示例
           

摘要

PURPOSE: To compare machine learning classifiers trained on three clustering schemes to determine whether distinguishing healthy eyes from those with glaucomatous optic neuropathy (GON) can be optimized by training with clustered data. METHODS: Two machine learning classifiers-quadratic discriminant analysis (QDA) and support vector machines with Gaussian kernel (SVMg)-were trained separately using standard perimetry data from the Diagnostic Innovations in Glaucoma Study (DIGS), clustered using three clustering schemes on a training data set (123 eyes/123 glaucoma patients with GON; 135 eyes/135 normal control subjects). Trained classifiers were then applied to an independent data set containing 69 eyes of 69 glaucoma patients with early visual field loss and 83 eyes of 83 normal control subjects. Two control conditions were included: unclustered data and a random assignment of locations to clusters. RESULTS: Areas under the receiver operating characteristic (ROC) curve ranged from 0.85 (SVMg, thresholds clustered by Glaucoma Hemifield Test sectors) to 0.92 (QDA, thresholds clustered by Garway-Heath mapping) for the training data set. Use of clustered data showed no significant optimization of sensitivity over use of unclustered data, and no single clustering method resulted in significantly higher performance in the independent data set. Sensitivities tended to be higher with QDA than with SVMg, regardless of specificity cutoff and clustering METHOD: CONCLUSIONS: QDA performed better with the early glaucoma data set than did the SVMg. Clustering may be advantageous when data-dimension reduction is needed-for example, when combining field results with other high-dimensional data (e.g., structural imaging data)-but it is not necessary for visual field data alone.
机译:目的:为了比较在三种聚类方案上训练的机器学习分类器,以确定是否可以通过对聚类数据进行训练来优化将健康眼与青光眼性视神经病变(GON)相区别。方法:使用来自青光眼研究诊断创新(DIGS)的标准视野检查数据,分别训练了两个机器学习分类器-二次判别分析(QDA)和具有高斯核(SVMg)的支持向量机,并在训练中使用了三个聚类方案对它们进行了聚类。数据集(123眼/ 123例青光眼GON患者; 135眼/ 135正常对照组)。然后将训练有素的分类器应用于独立数据集,该数据集包含69位早期视野丧失的青光眼患者的69只眼和83位正常对照对象的83只眼。其中包括两个控制条件:非集群数据和集群位置的随机分配。结果:训练数据集的接收器工作特性(ROC)曲线下面积从0.85(SVMg,由青光眼Hemifield测试扇区聚类的阈值)到0.92(QDA,由Garway-Heath映射聚类的阈值)。使用聚类数据表明,与使用非聚类数据相比,灵敏度没有显着优化,并且没有一种聚类方法导致独立数据集的性能显着提高。 QDA的敏感性倾向于高于SVMg,而与特异性阈值和聚类无关,方法:结论:早期青光眼数据集的QDA优于SVMg。当需要减少数据维度时(例如,当将现场结果与其他高维数据(例如,结构成像数据)组合时),聚类可能是有利的,但对于单独的视野数据而言,则不必这样做。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号