...
【24h】

Kinetics and mechanism of rhenium-catalyzed oxygen atom transfer from pyridine N-oxides to phosphines

机译:rh催化氧原子从吡啶N-氧化物转移至膦的动力学和机理

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The oxygen atom transfer (OAT) reaction cited does not occur on its own in >10 h. Oxorhenium(V) compounds having the formula MeReO(dithiolate)PZ(3) catalyze the reaction; the catalyst most studied was MeReO(mtp)PPh3, 1, where mtpH(2) = 2-(mercaptomethyl)thiophenol. The mechanism was studied by multiple techniques. Kinetics (initial-rate and full-time-course methods) established this rate law: v = k(c)[1][PyO](2)[PPh3](-1). Here and elsewhere PyO symbolizes the general case XC5H4NO and PicO that with X = 4-Me. For 4-picoline, k(c) = (1.50 +/- 0.05) x 10(4) L mol(-1) s(-1) in benzene at 25.0 degreesC; the inverse phosphine dependence signals the need for the removal of phosphine from the coordination sphere of rhenium prior to the rate-controlling step (RCS). The actual entry of PPh3 into the cycle occurs in a fast step later in the catalytic cycle, after the RCS; its relative rate constants (k(4)) were evaluated with pairwise combinations of phosphines. Substituent effects were studied in three ways: for (YC6H4)(3)P, a Hammett correlation of k(c) against 3sigma gives the reaction constant rho(c)(P) = +1.03, consistent with phosphine predissociation; for PyO rho(c)(N) = -3.84. It is so highly negative because PyO enters in three steps, each of which is improved by a better Lewis base or nucleophile, and again for (YC6H4)(3)P as regards the k(4) step, rho(4) = -0.70, reflecting its role as a nucleophile in attacking a postulated dioxorhenium(VII) intermediate, The RCS is represented by the breaking of the covalent N-O bond within another intermediate inferred from the kinetics, [MeReO(mtp)(OPY)(2)], to yield the dioxorhenium(VII) species [MeRe(O)(2)(MtP)(OPY)], A close analogue, [MeRe(O)(2)(MtP)PiC], was identified by H-1 NMR spectroscopy at 240 K in toluene-d(8). The role of the "second" PyO in the rate law and reaction scheme is attributed to its providing nucleophilic assistance to the RCS, Addition of an exogenous nucleophile (tetrabutylammonium bromide, Py, or Pic) caused an accelerating effect. When Pic was used, the rate law took on the new form v = k(NA)[1][PicO][Pic][PPh3](-1); k(NA) = 2.6 x 10(2) L mol(-1) s(-1) at 25.0 degreesC in benzene, The ratio k(c)/k(NA) is 58, consistent with the Lewis basicities and nucleophilicities of PicO and Pic. [References: 13]
机译:引用的氧原子转移(OAT)反应不会在> 10小时内单独发生。具有式MeReO(二硫代)PZ(3)的Oxorhenium(V)化合物催化该反应;研究最多的催化剂是MeReO(mtp)PPh3,1,其中mtpH(2)= 2-(巯基甲基)硫酚。通过多种技术研究了该机制。动力学(初始速率和全日制方法)建立了该速率定律:v = k(c)[1] [PyO](2)[PPh3](-1)。在这里和其他地方,PyO表示X = 4-Me的一般情况XC5H4NO和PicO。对于4-picoline,在25.0摄氏度的苯中,k(c)=(1.50 +/- 0.05)x 10(4)L mol(-1)s(-1);磷化氢的逆依赖性表明在速率控制步骤(RCS)之前需要从sphere的配位域中除去磷化氢。 PPh3实际进入循环的过程是在RCS之后的催化循环后期的一个快速步骤中进行的。用膦的成对组合评估其相对速率常数(k(4))。用三种方式研究了取代基的作用:对于(YC6H4)(3)P,k(c)与3sigma的Hammett相关性给出了反应常数rho(c)(P)= +1.03,与膦预离解一致;对于PyO rho(c)(N)= -3.84。之所以如此之所以如此消极,是因为PyO分三步进入,每一步都通过更好的Lewis碱或亲核试剂得到改善,对于(YC6H4)(3)P,在k(4)步骤中,rho(4)=- 0.70,反映了它作为亲核试剂攻击假定的二氧or鎓(VII)中间体的作用,RCS表示通过动力学[MeReO(mtp)(OPY)(2)推断的另一种中间体内的共价NO键断裂。 ,以产生二氧or鎓(VII)物种[MeRe(O)(2)(MtP)(OPY)],通过H-1 NMR鉴定了紧密类似的化合物[MeRe(O)(2)(MtP)PiC]。甲苯-d(8)中在240 K下的光谱学“第二个” PyO在速率定律和反应方案中的作用归因于其为RCS提供亲核助剂,外源亲核试剂(溴化四丁基铵,Py或Pic)的添加导致了加速作用。使用Pic时,费率定律采用新形式v = k(NA)[1] [PicO] [Pic] [PPh3](-1);在苯中25.0摄氏度下,k(NA)= 2.6 x 10(2)L mol(-1)s(-1),k(c)/ k(NA)之比为58,与Lewis的碱性和亲核性一致PicO和Pic。 [参考:13]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号