...
首页> 外文期刊>International Journal of Thermal Sciences >Entropy production and field synergy principle in turbulent vortical flows
【24h】

Entropy production and field synergy principle in turbulent vortical flows

机译:涡流中的熵产生与场协同原理

获取原文
获取原文并翻译 | 示例

摘要

The heat transfer in turbulent vortical flows is investigated by three different physical approaches. Vortical structures are generated by inclined baffles in a turbulent pipe flow, of three different configurations. In the first, the vortex generators are aligned and inclined in the flow direction (called the reference geometry); in the second, a periodic 45° rotation is applied to the tab arrays (alternating geometry); the third is the reference geometry used in the direction opposite to the flow (reversed geometry). The effect of the flow structure on the temperature distribution in these different configurations is analyzed. The conventional approach based on heat-transfer analysis using the Nusselt number and the enhancement factor is used to determine the efficiency of these geometries relative to other heat exchangers in the literature. The effect of vorticity on the Nusselt number is clearly demonstrated, and so as to highlight the respective roles of the coherent structures and the turbulence, a new parameter is defined as the ratio of the vortex circulation to the turbulent viscosity. The relative contribution of the radial convection to heat transfer appears to increase with Reynolds number. The effect of mixing performance on the temperature distribution is investigated by the field synergy method. A global parameter, namely the intersection angle between the velocity and temperature gradient, is defined in order to compare performances. Finally, an analysis of energetic efficiency by entropy production, involving both heat transfer and pressure losses, is carried out to determine the overall performance of the heat exchangers. All these approaches lead to the same conclusion: that the reversed geometry presents the best heat transfer coefficient and the best energetic efficiency. The reference geometry shows the worst performance, and the alternating array has intermediate performance.
机译:通过三种不同的物理方法研究了涡流中的热传递。涡流结构由紊流管中的倾斜挡板产生,具有三种不同的配置。首先,涡流发生器在流动方向上对准并倾斜(称为参考几何形状);在第二个步骤中,将周期性的45°旋转应用于制表符阵列(交替的几何形状);第三个是在与流相反的方向上使用的参考几何体(反转的几何体)。分析了这些不同配置中的流动结构对温度分布的影响。基于热传递分析的常规方法使用Nusselt数和增强因子来确定相对于文献中其他热交换器的这些几何形状的效率。涡度对Nusselt数的影响得到了清楚的证明,为了突出相干结构和湍流的各自作用,定义了一个新参数,即涡旋环流与湍流粘度的比值。径向对流对热传递的相对贡献似乎随着雷诺数的增加而增加。通过场协同方法研究了混合性能对温度分布的影响。为了比较性能,定义了一个全局参数,即速度和温度梯度之间的交角。最后,通过熵产生的能量效率分析(包括传热和压力损失)进行了分析,以确定热交换器的整体性能。所有这些方法都得出相同的结论:颠倒的几何形状表现出最佳的传热系数和最佳的能量效率。参考几何图形显示最差的性能,而交替阵列具有中等的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号