首页> 外文期刊>International Journal of Quantum Chemistry >Uncovering the Innate Thermodynamic Quantities in Protein Unfolding
【24h】

Uncovering the Innate Thermodynamic Quantities in Protein Unfolding

机译:在蛋白质展开中发现先天的热力学量

获取原文
获取原文并翻译 | 示例
       

摘要

The "cold denaturation" phenomenon is analyzed using an extension of the Planck-Benzinger thermal work function. For small molecules, reaction enthalpies are often obtained around room temperature, such that #DELTA#H_(298)~o = #DELTA#H~o(T_o) + integral from x=o to x=298 of #DELTA#Cp~o dT, and the heat of reaction is estimated in terms of the innate temperature-invariant enthalpy(inherent chemical bond energy), #DELTA#H~o(T_0). Cottrell (The Strength of Chemical Bonds; Academic Press; New York, London, 1958; Chapter 3; pp. 21-46; Chapter 4; pp. 47-70) pointed out 40 years ago that #DELTA#H_(298)~o and #DELTA#H~o(T_0) differ only by 1% in small molecules, but in 1971 Benzinger [Nature (London)1971, 220, 100-103] made the crucial observation that this difference is large in biological macromolecules due to the large magnitude of the heat capacity integrals (thermal agitation energy). In the other words, for small molecules, [#DELTA#H_(298)~o - #DELTA#H~o(T_0)] is a correction of only a few percent, whereas for biological macromolecules, the heat capacity integrals can be large, from 10% up to 50% of the total heat of reaction. In the case of T4 phage lysozyme, the thermal unfolding of wild type and mutant [W138, W138Y, and 3W(128, 138, 158)3Y] forms have heat capacity integrals that are some 10 times greater than the innate temperature-invariant enthalpy. In cases of protein unfolding such as the phage T4 phage lysozyme mutants, no thermodynamic molecular switch, unique to biological systems, is observed. It is apparent that use of the Planck-Benzinger thermal work function to evaluate the innate temperature-invariant enthalpy can be tremendously helpful in differentiating between native wild-type and closely-related mutant forms of protein. Therefore, this thermodynamic application should be essential to any future studies involving the site-directed, mutagenic approach to an examination of structure-function problems in proteins.
机译:使用普朗克-本辛格热功函数的扩展来分析“冷变性”现象。对于小分子,通常在室温附近获得反应焓,使得#DELTA#H_(298)〜o =#DELTA#H〜o(T_o)+从#DELTA#Cp〜的x = o到x = 298的积分o dT,并根据先天温度不变的焓(固有化学键能)#DELTA#H〜o(T_0)估算反应热。科特雷尔(化学键的强度;学术出版社;纽约,伦敦,1958年;第3章;第21-46页;第4章;第47-70页)指出40年前#DELTA#H_(298)〜 o和#DELTA#H〜o(T_0)在小分子中仅相差1%,但是在1971年Benzinger [Nature(London)1971,220,100-103]中做出了关键性的观察,即这种差异在生物大分子中达到很大的热容积分(热搅拌能量)。换句话说,对于小分子,[#DELTA#H_(298)〜o-#DELTA#H〜o(T_0)]仅校正几个百分点,而对于生物大分子,热容积分可以为很大,占反应总热量的10%到50%。在T4噬菌体溶菌酶的情况下,野生型和突变型[W138,W138Y和3W(128、138、158)3Y]形式的热展开具有比先天温度不变焓大约10倍的热容量积分。在蛋白质解折叠的情况下,例如噬菌体T4噬菌体溶菌酶突变体,没有观察到生物系统独有的热力学分子转换。显然,使用Planck-Benzinger热功函数来评估先天温度不变的焓可以在区分天然野生型和密切相关的蛋白质突变形式方面提供巨大帮助。因此,对于涉及蛋白质的结构功能问题的定点诱变方法的任何未来研究,这种热力学应用都是必不可少的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号