...
首页> 外文期刊>International journal of numerical analysis and modeling >DYNAMICAL SIMULATION OF RED BLOOD CELL RHEOLOGY IN MICROVESSELS
【24h】

DYNAMICAL SIMULATION OF RED BLOOD CELL RHEOLOGY IN MICROVESSELS

机译:微血管中红血球流变性的动力学模拟

获取原文
获取原文并翻译 | 示例

摘要

A spring model is applied to simulate the skeleton structure of the red blood cell (RBC) membrane and to study the red blood cell (RBC) rheology in microvessels. The biconcave RBC shape in static plasma and tank-treading behavior of single cell in shear flows have been successfully captured in this model. The behavior of the RBC in a Poiseuille flow and the lateral migration of the cells in a shear flow have been investigated. It is found that the RBCs exhibit parachute shape in a Poiseuille flow with the curvature closely related to the deformability of the cell membrane and the hematocrit (Hct) of the blood. With this spring model, RBCs can recover their initial shapes associated with the minimal elastic energy when the flow stops. The simulation results also show that the RBCs migrate to the center of the domain in the radial direction in a shear flow, which clearly indicates the Fahraeus-Lindqvist effect in microvessels. The rate of migration toward the center depends on the shape of the RBC; the bioconcave shape enhences this migration.
机译:应用弹簧模型来模拟红细胞(RBC)膜的骨架结构,并研究微血管中的红细胞(RBC)流变性。该模型成功捕获了静态等离子体中的双凹RBC形状和剪切流中单个单元的储罐踩踏行为。已经研究了Poiseuille流中RBC的行为以及剪切流中细胞的横向迁移。已发现,RBC在Poiseuille流中表现出降落伞形状,其曲率与细胞膜的变形能力和血液的血细胞比容(Hct)密切相关。使用这种弹簧模型,当流量停止时,RBC可以恢复其与最小弹性能量相关的初始形状。仿真结果还表明,RBC在剪切流中沿径向方向迁移到畴的中心,这清楚地表明了微血管中的Fahraeus-Lindqvist效应。向中心迁移的速率取决于RBC的形状;生物凹形增强了这种迁移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号