首页> 外文期刊>International Journal of Greenhouse Gas Control >Geological storage of CO2: application, feasibility and efficiency of global sensitivity analysis and risk assessment using the arbitrary polynomial chaos.
【24h】

Geological storage of CO2: application, feasibility and efficiency of global sensitivity analysis and risk assessment using the arbitrary polynomial chaos.

机译:CO 2 的地质存储:利用任意多项式混沌进行全局敏感性分析和风险评估的应用,可行性和效率。

获取原文
获取原文并翻译 | 示例
       

摘要

Geological storage of CO2 is a proposed interim solution for mitigating the climate change. Modeling CO2 storage is accompanied by huge geological uncertainties and excessive computational demands. However, the considerable costs and potential hazards of the technique require feasibility studies to assess all possible risks. This makes computationally efficient methods for sensitivity analysis, uncertainty quantification and probabilistic risk assessment indispensable. Our goal is to demonstrate the application and feasibility of the arbitrary polynomial chaos expansion (aPC) for these tasks under realistic conditions. We model a typical CO2 injection scenario in realistic geological realizations of a shallow marine deposit. Our scenario features uncertain parameters that control the structure of geological heterogeneities, including the density of barriers, the aggradation angle, fault transmissibility and regional groundwater effects. The aPC approximates the models by a polynomial-based response surface to speed up the involved statistical analysis of an otherwise expensive simulation tool. We demonstrate how such an analysis can guide further exploration and the design process of finding suitable injection rates. Our case study demonstrates clearly that the aPC is an efficient, feasible and hence valuable approach in this context, and we strongly encourage its future use. A key advantage of the aPC over more conventional polynomial chaos methods is the flexibility to work with arbitrary probability distributions of uncertain parameters. From our featured parameters, we found the aggradation angle to be the most and the regional groundwater effect to be the least influential one. To the best of our knowledge, this is the first analysis of structural parameters for geological heterogeneities in the CO2 context and within a probabilistic setting.
机译:CO 2 的地质封存是缓解气候变化的临时解决方案。 CO 2 储层的建模伴随着巨大的地质不确定性和过多的计算需求。但是,该技术的巨大成本和潜在危害要求进行可行性研究以评估所有可能的风险。这使得用于敏感度分析,不确定性量化和概率风险评估的高效计算方法必不可少。我们的目标是证明在现实条件下任意多项式混沌扩展(aPC)在这些任务上的应用和可行性。我们在浅海沉积物的实际地质实现中模拟了典型的CO 2 注入情景。我们的场景具有不确定的参数,这些参数控制着地质异质性的结构,包括屏障的密度,凝集角,断层透过率和区域地下水影响。 aPC通过基于多项式的响应面对模型进行逼近,以加快原本昂贵的仿真工具的相关统计分析。我们演示了这种分析如何指导进一步的探索以及寻找合适的注入速率的设计过程。我们的案例研究清楚地表明,在这种情况下,aPC是一种有效,可行且因此有价值的方法,并且我们强烈鼓励其未来使用。与更传统的多项式混沌方法相比,aPC的一个关键优势是灵活性,可以处理不确定参数的任意概率分布。从我们的特征参数中,我们发现凝结角最大,而对区域地下水的影响最小。据我们所知,这是对CO 2 上下文和概率环境中地质异质性结构参数的首次分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号