...
首页> 外文期刊>International journal of engine research >Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations
【24h】

Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

机译:使用车辆系统仿真进行反应性控制的压缩点火驾驶循环排放和燃油经济性估算

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NOX and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. A multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustion when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition-enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.
机译:与传统的柴油机燃烧相比,缸内汽油和柴油的共混以实现反应性受控的压缩点火已显示出减少NOX和烟尘排放的同时保持或提高了制动热效率。反应性控制的压缩点火概念相对于许多先进的燃烧策略具有优势,因为可以根据发动机转速和负载调整燃料反应性,从而使稳定的低温燃烧扩展到更多的轻载驾驶循环负载范围内。采用多模式反应性控制的压缩点火策略,其中,当速度和负载需求超出实验确定的反应性控制的压缩点火范围时,发动机从反应性控制的压缩点火切换为常规柴油机燃烧。反应性控制的压缩点火降低驾驶循环燃料经济性和排放的潜力尚未得到清楚的了解,在此通过模拟在美国各地运行的多模式反应性控制的压缩点火汽车的燃料经济性和排放进行探索。使用实验性发动机图进行驾驶循环,用于多模式反应性控制的压缩点火,常规柴油机燃烧和2009年港口燃料喷射汽油发动机。假设具有自动变速器的常规中型乘用车完成了驾驶循环模拟。将多模式反应性控制的压缩点火燃料经济性仿真结果与由具有代表性的2009年港口燃料喷射式汽油发动机提供动力的同一车辆在多个驱动周期内进行了比较。将发动机输出的驱动循环排放物与传统的柴油燃烧进行比较,并总结了各种驱动循环所需的相对汽油和柴油箱尺寸的观察结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号