首页> 外文期刊>International Journal of Automotive Technology >DYNAMIC ANALYSIS AND DESIGN CALCULATION METHODS FOR POWERTRAIN MOUNTING SYSTEMS
【24h】

DYNAMIC ANALYSIS AND DESIGN CALCULATION METHODS FOR POWERTRAIN MOUNTING SYSTEMS

机译:动力总成安装系统的动力学分析和设计计算方法

获取原文
获取原文并翻译 | 示例
           

摘要

A method for dynamic analysis and design calculation of a Powertrain Mounting System (PMS) including Hydraulic Engine Mounts (HEM) is developed with the aim of controlling powertrain motion and reducing low-frequency vibration in pitch and bounce modes. Here the pitch mode of the powertrain is defined as the mode rotating around the crankshaft of an engine for a transversely mounted powertrain. The powertrain is modeled as a rigid body connected to rigid ground by rubber mounts and/or HEMs. A mount is simplified as a three-dimensional spring with damping elements in its Local Coordinate System (LCS). The relation between force and displacement of each mount in its LCS is usually nonlinear and is simplified as piecewise linear in five ranges in this paper. An equation for estimating displacements of the powertrain center of gravity (C.G.) under static or quasi-static load is developed using Newton's second law, and an iterative algorithm is presented to calculate the displacements. Also an equation for analyzing the dynamic response of the powertrain under ground and engine shake excitations is derived using Newton's second law. Formulae for calculating reaction forces and displacements at each mount are presented. A generic PMS with four rubber mounts or two rubber mounts and two HEMs are used to validate the dynamic analysis and design calculation methods. Calculated displacements of the powertrain C.G. under static or quasi-static loads show that a powertrain motion can meet the displacement limits by properly selecting the stiffness and coordinates of the tuning points of each mount in its LCS using the calculation methods developed in this paper. Simulation results of the dynamic responses of a powertrain C.G. and the reaction forces at mounts demonstrate that resonance peaks can be reduced effectively with HEMs designed on the basis of the proposed methods.
机译:为了控制动力总成运动并减少俯仰和弹跳模式下的低频振动,开发了一种用于动力总成安装系统(PMS)的动态分析和设计计算的方法,该系统包括液压发动机支架(HEM)。在此,动力总成的俯仰模式被定义为围绕横向安装的动力总成的发动机的曲轴旋转的模式。动力总成被建模为通过橡胶底座和/或HEM连接到刚性地面的刚性车身。支座简化为三维弹簧,其本地坐标系(LCS)中带有阻尼元件。每个安装座在其LCS中的力与位移之间的关系通常是非线性的,在本文中它被简化为分段线性的五个范围。利用牛顿第二定律建立了用于估计动力总重心(C.G.)在静态或准静态载荷下的位移的方程,并提出了一种迭代算法来计算位移。还使用牛顿第二定律推导出了用于分析动力总成在地面和发动机震动激励下的动态响应的方程式。给出了用于计算每个安装座的反作用力和位移的公式。具有四个橡胶底座或两个橡胶底座和两个HEM的通用PMS用于验证动态分析和设计计算方法。动力总成C.G.的计算位移在静态或准静态载荷下,通过使用本文开发的计算方法,通过适当选择LCS中每个安装座的调整点的刚度和坐标,动力总成运动可以满足位移极限。动力总成C.G.动态响应的仿真结果支架上的反作用力表明,使用基于所提出方法设计的HEM可以有效降低共振峰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号