...
首页> 外文期刊>International Journal for Numerical Methods in Engineering >Optimal design of laminated piezocomposite energy harvesting devices considering stress constraints
【24h】

Optimal design of laminated piezocomposite energy harvesting devices considering stress constraints

机译:考虑应力约束的压电复合材料能量采集装置的优化设计

获取原文
获取原文并翻译 | 示例

摘要

Energy harvesting devices are smart structures capable of converting the mechanical energy (generally, in the form of vibrations) that would be wasted otherwise in the environment into usable electrical energy. Laminated piezoelectric plate and shell structures have been largely used in the design of these devices because of their large generation areas. The design of energy harvesting devices is complex, and they can be efficiently designed by using topology optimization methods (TOM). In this work, the design of laminated piezocomposite energy harvesting devices has been studied using TOM. The energy harvesting performance is improved by maximizing the effective electric power generated by the piezoelectric material, measured at a coupled electric resistor, when subjected to a harmonic excitation. However, harmonic vibrations generate mechanical stress distribution that, depending on the frequency and the amplitude of vibration, may lead to piezoceramic failure. This study advocates using a global stress constraint, which accounts for different failure criteria for different types of materials (isotropic, piezoelectric, and orthotropic). Thus, the electric power is maximized by optimally distributing piezoelectric material, by choosing its polarization sign, and by properly choosing the fiber angles of composite materials to satisfy the global stress constraint. In the TOM formulation, the Piezoelectric Material with Penalization and Polarization material model is applied to distribute piezoelectric material and to choose its polarization sign, and the Discrete Material Optimization method is applied to optimize the composite fiber orientation. The finite element method is adopted to model the structure with a piezoelectric multilayered shell element. Numerical examples are presented to illustrate the proposed methodology. Copyright (c) 2015 John Wiley & Sons, Ltd.
机译:能量收集装置是智能结构,能够将原本会在环境中浪费的机械能(通常以振动的形式)转换为可用的电能。层压压电板和壳体结构由于其产生面积大而已被广泛用于这些装置的设计中。能量收集设备的设计很复杂,可以使用拓扑优化方法(TOM)对其进行高效设计。在这项工作中,已经使用TOM研究了层压压电复合材料能量收集装置的设计。通过最大化在受到谐波激励时在耦合电阻器处测得的压电材料产生的有效电能,可以提高能量收集性能。但是,谐波振动会产生机械应力分布,这取决于振动的频率和幅度,可能会导致压电陶瓷失效。这项研究主张使用全局应力约束,该约束考虑了不同类型材料(各向同性,压电和正交各向异性)的不同破坏准则。因此,通过最佳地分配压电材料,选择其极化符号以及适当选择复合材料的纤维角度以满足整体应力约束,可以使电力最大化。在TOM公式中,采用带惩罚和极化的压电材料模型来分配压电材料并选择其极化符号,并采用离散材料优化方法来优化复合纤维的取向。采用有限元方法对压电多层壳单元的结构进行建模。数值例子说明了所提出的方法。版权所有(c)2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号