首页> 外文期刊>Information Fusion >Fusing uncertain knowledge and evidence for maritime situational awareness via Markov Logic Networks
【24h】

Fusing uncertain knowledge and evidence for maritime situational awareness via Markov Logic Networks

机译:通过Markov Logic Networks将不确定的知识和证据融合在一起,以增强海事态势感知能力

获取原文
获取原文并翻译 | 示例

摘要

The concepts of event and anomaly are important building blocks for developing a situational picture of the observed environment. We here relate these concepts to the JDL fusion model and demonstrate the power of Markov Logic Networks (MLNs) for encoding uncertain knowledge and compute inferences according to observed evidence. MLNs combine the expressive power of first-order logic and the probabilistic uncertainty management of Markov networks. Within this framework, different types of knowledge (e.g. a priori, contextual) with associated uncertainty can be fused together for situation assessment by expressing unobservable complex events as a logical combination of simpler evidences. We also develop a mechanism to evaluate the level of completion of complex events and show how, along with event probability, it could provide additional useful information to the operator. Examples are demonstrated on two maritime scenarios of rules for event and anomaly detection. (C) 2013 NATO Science and Technology Organization, Centre for Maritime Research and Experimentation. Published by Elsevier B.V. All rights reserved.
机译:事件和异常的概念是开发所观察环境的情景图片的重要基础。在这里,我们将这些概念与JDL融合模型相关联,并展示了马尔可夫逻辑网络(MLN)的功能,用于对不确定的知识进行编码并根据观察到的证据计算推断。 MLN结合了一阶逻辑的表达能力和Markov网络的概率不确定性管理。在此框架内,可以通过将不可观察到的复杂事件表示为简单证据的逻辑组合,将具有相关不确定性的不同类型的知识(例如先验知识,上下文知识)融合在一起以进行情况评估。我们还开发了一种机制来评估复杂事件的完成程度,并展示如何与事件概率一起为操作员提供其他有用信息。在两个海上事件事件和异常检测规则场景中演示了示例。 (C)2013年北约科学技术组织海事研究与实验中心。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号