首页> 外文期刊>Brain research. Developmental brain research >In vivo effect of chronic hypoxia on the neurochemical profile of the developing rat hippocampus.
【24h】

In vivo effect of chronic hypoxia on the neurochemical profile of the developing rat hippocampus.

机译:慢性缺氧对发育中的大鼠海马神经化学特征的体内影响。

获取原文
获取原文并翻译 | 示例
       

摘要

The cognitive deficits observed in children with cyanotic congenital heart disease suggest involvement of the developing hippocampus. Chronic postnatal hypoxia present during infancy in these children may play a role in these impairments. To understand the biochemical mechanisms of hippocampal injury in chronic hypoxia, a neurochemical profile consisting of 15 metabolite concentrations and 2 metabolite ratios in the hippocampus was evaluated in a rat model of chronic postnatal hypoxia using in vivo 1H NMR spectroscopy at 9.4 T. Chronic hypoxia was induced by continuously exposing rats (n = 23) to 10% O2 from postnatal day (P) 3 to P28. Fifteen metabolites were quantified from a volume of 9-11 microl centered on the left hippocampus on P14, P21, and P28 and were compared with normoxic controls (n = 14). The developmental trajectory of neurochemicals in chronic hypoxia was similar to that seen in normoxia. However, chronic hypoxia had an effect on the concentrations of the following neurochemicals: aspartate, creatine, phosphocreatine, GABA, glutamate, glutamine, glutathione, myoinositol, N-acetylaspartate (NAA), phosphorylethanolamine, and phosphocreatine/creatine (PCr/Cr) and glutamate/glutamine (Glu/Gln) ratios (P < 0.001 each, except glutamate, P = 0.04). The increased PCr/Cr ratio is consistent with decreased brain energy consumption. Given the well-established link between excitatory neurotransmission and brain energy metabolism, we postulate that elevated glutamate, Glu/Gln ratio, and GABA indicate suppressed excitatory neurotransmission in an energy-limited environment. Decreased NAA and phosphorylethanolamine suggest reduced neuronal integrity and phospholipid metabolism. The altered hippocampal neurochemistry during its development may underlie some of the cognitive deficits present in human infants at risk of chronic hypoxia.
机译:在患有发con性先天性心脏病的儿童中观察到的认知缺陷表明发育中的海马受累。这些儿童在婴儿期出现的慢性产后缺氧可能是这些障碍的原因。为了了解慢性缺氧性海马损伤的生物化学机制,在慢性产后缺氧的大鼠模型中,使用9.4 T的体内1H NMR光谱仪评估了由15种代谢物浓度和2种代谢物比率构成的海马神经化学特征。从出生后(P)3至P28连续将大鼠(n = 23)暴露于10%的O2中诱导引起。从以P14,P21和P28的左侧海马为中心的9-11微升的体积中定量了15种代谢物,并与常氧对照组进行比较(n = 14)。慢性低氧状态下神经化学物质的发展轨迹与常氧状态相似。但是,慢性缺氧会影响以下神经化学物质的浓度:天冬氨酸,肌酸,磷酸肌酸,GABA,谷氨酸,谷氨酰胺,谷胱甘肽,肌醇,N-乙酰天门冬氨酸(NAA),磷酰乙醇胺,磷酸肌酸/肌酸(PCr / Cr)和谷氨酸/谷氨酰胺(Glu / Gln)比率(除谷氨酸外,每个P <0.001,P = 0.04)。 PCr / Cr比值的增加与大脑能量消耗的减少相一致。考虑到兴奋性神经传递与脑能量代谢之间已建立的联系,我们推测谷氨酸,Glu / Gln比和GABA升高表明在能量受限的环境中兴奋性神经传递受到抑制。 NAA和磷酸乙醇胺的减少提示神经元完整性和磷脂代谢降低。在其发展过程中海马神经化学的改变可能是存在慢性低氧风险的人类婴儿中某些认知缺陷的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号