首页> 外文期刊>Neural computing & applications >An improved SOM algorithm and its application to color feature extraction
【24h】

An improved SOM algorithm and its application to color feature extraction

机译:一种改进的SOM算法及其在颜色特征提取中的应用

获取原文
获取原文并翻译 | 示例

摘要

Reducing the redundancy of dominant color features in an image and meanwhile preserving the diversity and quality of extracted colors is of importance in many applications such as image analysis and compression. This paper presents an improved self-organization map (SOM) algorithm namely MFD-SOM and its application to color feature extraction from images. Different from the winner-take-all competitive principle held by conventional SOM algorithms, MFD-SOM prevents, to a certain degree, features of non-principal components in the training data from being weakened or lost in the learning process, which is conductive to preserving the diversity of extracted features. Besides, MFD-SOM adopts a new way to update weight vectors of neurons, which helps to reduce the redundancy in features extracted from the principal components. In addition, we apply a linear neighborhood function in the proposed algorithm aiming to improve its performance on color feature extraction. Experimental results of feature extraction on artificial datasets and benchmark image datasets demonstrate the characteristics of the MFD-SOM algorithm.
机译:减少图像中主色特征的冗余,同时保持提取颜色的多样性和质量,在图像分析和压缩等许多应用中都很重要。该文提出了一种改进的自组织映射(SOM)算法MFD-SOM,及其在图像色彩特征提取中的应用。与传统SOM算法的赢家通吃竞争原则不同,MFD-SOM在一定程度上防止了训练数据中非主成分的特征在学习过程中被削弱或丢失,有利于保持提取特征的多样性。此外,MFD-SOM采用了一种新的方法来更新神经元的权重向量,这有助于减少从主成分中提取的特征的冗余。此外,我们在所提出的算法中应用了线性邻域函数,旨在提高其在颜色特征提取方面的性能。在人工数据集和基准图像数据集上进行特征提取的实验结果验证了MFD-SOM算法的特点。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号