...
首页> 外文期刊>Icarus: International Journal of Solar System Studies >Water loss and evolution of the upper atmosphere and exosphere over martian history
【24h】

Water loss and evolution of the upper atmosphere and exosphere over martian history

机译:火星历史上的水分流失以及高层大气和大气圈的演变

获取原文
获取原文并翻译 | 示例
           

摘要

The loss of water from Mars can be evaluated by studying the evolution of the escape rate of atomic oxygen over time. Throughout martian history, the evolution of solar radiation has led to significant variations in the macroscopic parameters of the thermosphere/ionosphere, which in turn govern the hot species population of the exosphere and especially the atmospheric loss rates. In this study, the combination of our Direct Simulation Monte Carlo (DSMC) kinetic model and the 3D Mars Thermosphere General Circulation Model (MTGCM) [Valeille, A., Combi, M.R., Tenishev, V., Bougher, S.W., Nagy, A., 2009. Icarus. doi:10.1016/j.icarus.2008.08.018] is used to describe self-consistently ancient upper atmospheres of Mars for different solar inputs. 3D descriptions from the MTGCM of the ancient thermosphere/ionosphere are presented and discussed for the first time, including density profiles and temperature maps of the background neutrals and ions for the three epochs considered, which can be related to a solar EUV (Extreme Ultraviolet) flux enhancement of 1, 3 and 6 times the present values. Furthermore, solar cycle effects are quantified and discussed for both present and past conditions. Along with maps of ion production by photoionization (PI), charge exchange (CE) and electron impact (EI), the DSMC model provides density and temperature profiles, return fluxes and atmospheric loss rates of suprathermal exospheric oxygen as functions of the Solar Zenith Angle (SZA). This approach allows us to study the effects of dynamics on the ancient Mars upper atmosphere structure. Thermospheric variations are found to be not as large as previous 1D models predicted. The study of the evolution of the heat balance suggests that the ancient Mars thermosphere, of about 3.5 billion years (Gyr) ago, was relatively similar to the present Venus thermosphere. While O_2~+ dissociative recombination (DR) is by far the main source of atmospheric escape at present, its relative contribution is shown to be reduced in the past compared to secondary escape processes. Nevertheless, O_2~+ DR is found to remain the main driver of atmospheric escape over this period. The long-term decay of atmospheric loss throughout the martian history (until about 3.5 Gyr ago) may be comparable to the short-term periodic variations at present. A heuristic scaling law for evolution of water over time is proposed and a conservative estimate of about 10 m of water is found to have escaped globally to space over the last ~3.5 Gyr.
机译:可以通过研究原子氧逸出速率随时间的变化来评估火星上水的损失。在整个火星历史上,太阳辐射的演变导致热圈/电离层的宏观参数发生显着变化,进而改变了外层热物种的数量,尤其是大气损失率。在这项研究中,我们的直接模拟蒙特卡洛(DSMC)动力学模型和3D火星热层总循环模型(MTGCM)[Valeille,A.,Combi,MR,Tenishev,V.,Bougher,SW,Nagy,A ,2009年。伊卡洛斯。 doi:10.1016 / j.icarus.2008.08.018]用于描述自相一致的古代火星在不同太阳输入下的高层大气。首次介绍和讨论了来自远古热圈/电离层MTGCM的3D描述,包括所考虑的三个时期的背景中性离子和离子的密度分布图和温度图,这可能与太阳EUV(极端紫外线)有关通量提高到当前值的1、3和6倍。此外,对当前和过去条件下的太阳周期效应进行了量化和讨论。除了通过光电离(PI),电荷交换(CE)和电子撞击(EI)产生的离子图,DSMC模型还提供了太阳热天顶氧的密度和温度曲线,返回通量和超大气外氧的大气损耗率, (SZA)。这种方法使我们能够研究动力学对古代火星高层大气结构的影响。发现热圈变化不如先前的一维模型预测的大。对热平衡演变的研究表明,大约35亿年前(吉尔)的古代火星热圈与目前的金星热圈相对相似。尽管目前O_2〜+离解重组(DR)是大气逸散的主要来源,但与二次逸散过程相比,O_2〜+离解重组(DR)过去的相对贡献已显示出降低。然而,在这一时期,O_2〜+ DR被发现仍然是大气逸出的主要驱动力。在整个火星历史上(直到大约3.5 Gyr之前)大气损耗的长期衰减可能与目前的短期周期性变化相当。提出了随时间变化的水的启发式比例定律,并保守估计约有10 m的水在最后一个〜3.5 Gyr时已向全球逃逸到太空。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号