首页> 外文期刊>Artificial Intelligence Review: An International Science and Engineering Journal >Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals
【24h】

Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals

机译:深度学习在基于振动信号的旋转机械故障诊断中的应用研究进展

获取原文
获取原文并翻译 | 示例

摘要

Vibration measurement and monitoring are essential in a wide variety of applications. Vibration measurements are critical for diagnosing industrial machinery malfunctions because they provide information about the condition of the rotating equipment. Vibration analysis is considered the most effective method for predictive maintenance because it is used to troubleshoot instantaneous faults as well as periodic maintenance. Numerous studies conducted in this vein have been published in a variety of outlets. This review documents data-driven and recently published deep learning techniques for vibration-based condition monitoring. Numerous studies were obtained from two reputable indexing databases, Web of Science and Scopus. Following a thorough review, 59 studies were selected for synthesis. The selected studies are then systematically discussed to provide researchers with an in-depth view of deep learning-based fault diagnosis methods based on vibration signals. Additionally, a few remarks regarding future research directions are made, including graph-based neural networks, physics-informed ML, and a transformer convolutional network-based fault diagnosis method.
机译:振动测量和监测在各种应用中都是必不可少的。振动测量对于诊断工业机械故障至关重要,因为它们提供了有关旋转设备状况的信息。振动分析被认为是预测性维护的最有效方法,因为它用于排除瞬时故障和定期维护。在这方面进行的大量研究已在各种媒体上发表。这篇综述记录了数据驱动和最近发表的基于振动的状态监测深度学习技术。许多研究来自两个著名的索引数据库,Web of Science和Scopus。经过全面审查,选择了59项研究进行综合。然后对选定的研究进行系统讨论,为研究人员提供基于深度学习的基于振动信号的故障诊断方法的深入见解。此外,还对未来的研究方向进行了一些评论,包括基于图的神经网络、基于物理的机器学习和基于变压器卷积网络的故障诊断方法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号