...
首页> 外文期刊>Astrophysics and space science >Building galaxies, stars, planets and the ingredients for life between the stars. The science behind the European Ultraviolet-Visible Observatory
【24h】

Building galaxies, stars, planets and the ingredients for life between the stars. The science behind the European Ultraviolet-Visible Observatory

机译:建立星系,恒星,行星以及恒星之间生命的成分。欧洲紫外线可见天文台背后的科学

获取原文
获取原文并翻译 | 示例
           

摘要

This contribution gathers the contents of the white paper submitted by the UV community to the Call issued by the European Space Agency in March 2013, for the definition of the L2 and L3 missions in the ESA science program. We outlined the key science that a large UV facility would make possible and the instrumentation to be implemented. The growth of luminous structures and the building blocks of life in the Universe began as primordial gas was processed in stars and mixed at galactic scales. The mechanisms responsible for this development are not wellunderstood and have changed over the intervening 13 billion years. To follow the evolution of matter over cosmic time, it is necessary to study the strongest (resonance) transitions of the most abundant species in the Universe. Most of them are in the ultraviolet (UV; 950 ?–3000 ?) spectral range that is unobservable from the ground. A versatile space observatory with UV sensitivity a factor of 50–100 greater than existing facilities will revolutionize our understanding of the Universe. Habitable planets grow in protostellar discs under ultraviolet irradiation, a by-product of the star-disk interaction that drives the physical and chemical evolution of discs and young planetary systems. The electronic transitions of the most abundant molecules are pumped by this UV field, providing unique diagnostics of the planet-forming environment that cannot be accessed from the ground. Earth’s atmosphere is in constant interaction with the interplanetary medium and the solar UV radiation field. A 50–100 times improvement in sensitivity would enable the observation of the key atmospheric ingredients of Earth-like exoplanets (carbon, oxygen, ozone), provide crucial input for models of biologically active worlds outside the solar system, and provide the phenomenological baseline to understand the Earth atmosphere in context.
机译:该文稿收集了紫外线界提交给欧洲航天局于2013年3月发出的号召中的白皮书的内容,以定义ESA科学计划中的L2和L3任务。我们概述了大型紫外线设备将成为可能的关键科学以及将要实施的仪器。宇宙中发光结构的增长和生命的构成要素开始于原始气体在恒星中被处理并在银河尺度上混合。导致这种发展的机制尚未得到很好的理解,并且在随后的130亿年间发生了变化。为了跟踪物质在宇宙时间内的演化,有必要研究宇宙中最丰富物种的最强(共振)跃迁。它们中的大多数处于从地面无法观察到的紫外线(UV; 950?–3000?)光谱范围内。一个多功能的天文台,其紫外线敏感性比现有设施高50-100倍,这将彻底改变我们对宇宙的理解。在紫外线照射下,可居住行星在原恒星盘中生长,这是恒星盘相互作用的副产物,它驱动盘和年轻行星系统的物理和化学演化。最丰富的分子的电子跃迁被该紫外线场泵浦,提供了无法从地面进入的行星形成环境的独特诊断。地球大气与行星际介质和太阳紫外线辐射场之间不断相互作用。灵敏度提高50–100倍,可以观察到类似地球的系外行星的关键大气成分(碳,氧,臭氧),为太阳系以外的生物活跃世界的模型提供至关重要的输入,并为了解背景中的地球大气。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号