首页> 外文期刊>Astrophysics and space science >Extension of frozen orbits and Sun-synchronous orbits around terrestrial planets using continuous low-thrust propulsion
【24h】

Extension of frozen orbits and Sun-synchronous orbits around terrestrial planets using continuous low-thrust propulsion

机译:利用连续的低推力推进扩展行星周围的冰冻轨道和太阳同步轨道

获取原文
获取原文并翻译 | 示例
           

摘要

Frozen orbits and Sun-synchronous orbits are useful in exploration of terrestrial planets' surface and atmosphere with a view to future human exploration. This work therefore develops novel orbits around terrestrial planets using continuous low-thrust propulsion to enable one new and unique investigations of the planets. This paper considers the use of continuous acceleration by solar electric propulsion, to achieve artificial frozen orbits and artificial Sun-synchronous orbits around terrestrial planets. These artificial orbits are similar to natural frozen orbits and Sun-synchronous orbits around Mercury, Venus, the Earth, and Mars, and the orbital parameters can be designed arbitrarily with the help of continuous low-thrust control. The control strategies to achieve the artificial orbits take into account J(2), J(3), and J(4) perturbations of terrestrial planets. It is proved that the control strategies minimize characteristic velocity. Relevant formulas are derived, and numerical results are presented. For the natural frozen orbits, the arguments of periapsis are about 270 degrees for Mercury, Venus, and Mars, whereas about 90 degrees for the Earth. By exerting both radial and transverse thrusts simulation shows that the control acceleration and characteristic velocity of the artificial frozen orbit around Mercury are the smallest among these plants. The characteristic velocity within one orbital period for Mercury is only 0.0089 m/s. The natural Sun-synchronous orbits exist around the Earth and Mars, but not around Mercury and Venus. By offsetting the perturbation acceleration in norm direction, the control acceleration and characteristic velocity of the artificial Sun-synchronous orbit around Mars are less than those of the others. The characteristic velocity within one orbital period is only 18.0885 m/s for the artificial Sun-synchronous orbit around Mars. The relationships between the control thrusts and the primary orbital parameters of the artificial orbits around other terrestrial planets are always similar to those around the Earth. Finally, one constellation of the artificial frozen orbit and the artificial Sun-synchronous orbit is designed by using the multiobjective evolutionary algorithm based on decomposition (MOEA/D), in which a Gaussian process is used to build a surrogate model in lieu of the expensive problem. Simulation shows that the control scheme effectively extends the orbital parameters' selection ranges of the two types of artificial orbits around terrestrial planets, compared with the natural frozen orbit and Sun-synchronous orbit. The optimization result of the constellation orbits around Mars shows that the optimization framework is effective.
机译:冻结轨道和太阳同步轨道可用于探索地球行星的表面和大气层,以便将来进行人类探索。因此,这项工作利用连续的低推力推进,围绕着地球行星开发了新颖的轨道,从而对行星进行了一次新颖而独特的研究。本文考虑了利用太阳电推进的连续加速来实现人造冰冻轨道和人造行星围绕太阳的同步轨道。这些人造轨道类似于水星,金星,地球和火星周围的自然冻结轨道和太阳同步轨道,并且可以在连续的低推力控制的帮助下任意设计轨道参数。实现人造轨道的控制策略考虑到了地球行星的J(2),J(3)和J(4)扰动。证明了控制策略使特征速度最小化。推导了相关公式,并给出了数值结果。对于自然冰冻的轨道,水星,金星和火星的围岩角约为270度,而地球约为90度。通过同时施加径向和横向推力,模拟结果表明,在这些植物中,水星周围人造冰冻轨道的控制加速度和特征速度最小。水星在一个轨道周期内的特征速度仅为0.0089 m / s。太阳的自然同步轨道存在于地球和火星周围,但不存在于水星和金星周围。通过抵消标准方向上的摄动加速度,火星周围人造太阳同步轨道的控制加速度和特征速度小于其他轨道。对于围绕火星的人工太阳同步轨道,一个轨道周期内的特征速度仅为18.0885 m / s。控制推力与其他地面行星周围的人造轨道的主要轨道参数之间的关系始终与地球周围的相似。最后,利用基于分解的多目标进化算法(MOEA / D)设计了人工冻结轨道和人工太阳同步轨道的一个星座,其中使用高斯过程代替成本昂贵的模型来建立替代模型。问题。仿真表明,与自然冻结轨道和太阳同步轨道相比,该控制方案有效地扩展了围绕地球行星的两种人造轨道的轨道参数选择范围。火星周围轨道的优化结果表明,该优化框架是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号