首页> 外文期刊>Breeding science >Genome-wide genetic dissection of germplasm resources and implications for breeding by design in soybean
【24h】

Genome-wide genetic dissection of germplasm resources and implications for breeding by design in soybean

机译:全基因组种质资源遗传解剖及其对大豆设计育种的意义

获取原文
获取原文并翻译 | 示例
           

摘要

"Breeding by Design" as a concept described by Peleman and van der Voort aims to bring together superior alleles for all genes of agronomic importance from potential genetic resources. This might be achievable through high-resolution allele detection based on precise QTL (quantitative trait locus/loci) mapping of potential parental resources. The present paper reviews the works at the Chinese National Center for Soybean Improvement (NCSI) on exploration of QTL and their superior alleles of agronomic traits for genetic dissection of germplasm resources in soybeans towards practicing "Breeding by Design". Among the major germplasm resources, i.e. released commercial cultivar (RC), farmers' landrace (LR) and annual wild soybean accession (WS), the RC was recognized as the primary potential adapted parental sources, with a great number of new alleles (45.9%) having emerged and accumulated during the 90 years' scientific breeding processes. A mapping strategy, i.e. a full model procedure (including additive (A), epistasis (AA), A x environment (E) and AA x E effects), scanning with QTLNetwork2.0 and followed by verification with other procedures, was suggested and used for the experimental data when the underlying genetic model was usually unknown. In total, 110 data sets of 81 agronomically important traits were analyzed for their QTL, with 14.5% of the data sets showing major QTL (contribution rate more than 10.0% for each QTL), 55.5% showing a few major QTL but more small QTL, and 30.0% having only small QTL. In addition to the detected QTL, the collective unmapped minor QTL sometimes accounted for more than 50% of the genetic variation in a number of traits. Integrated with linkage mapping, association mappings were conducted on germplasm populations and validated to be able to provide complete information on multiple QTL and their multiple alleles. Accordingly, the QTL and their alleles of agronomic traits for large samples of RC, LR and WS were identified and then the QTL-allele matrices were established. Based on which the parental materials can be chosen for complementary recombination among loci and alleles to make the crossing plans genetically optimized. This approach has provided a way towards breeding by design, but the accuracy will depend on the precision of the loci and allele matrices.
机译:Peleman和van der Voort所描述的概念“设计育种”旨在将潜在遗传资源中具有重要农艺学意义的所有基因的优良等位基因汇集在一起​​。这可以通过基于潜在父母资源的精确QTL(定量性状基因座/基因座)作图的高分辨率等位基因检测来实现。本文综述了中国国家大豆改良中心(NCSI)在探索QTL及其农艺性状的优良等位基因以进行大豆种质资源遗传分离方面的工作,以实践“设计育种”。在主要的种质资源中,即已发布的商业品种(RC),农民的地方品种(LR)和年度野生大豆种质(WS),该RC被公认为是主要的潜在适应父母本源,其中有大量新等位基因(45.9)。 %)是在90年的科学育种过程中出现并积累的。提出了一种映射策略,即完整的模型程序(包括加性(A),上位性(AA),A x环境(E)和Aa x E效果),使用QTLNetwork2.0进行扫描,然后通过其他程序进行验证,当基础遗传模型通常未知时,用于实验数据。总共分析了81个重要农艺性状的110个数据集的QTL,其中14.5%的数据集显示了主​​要QTL(每个QTL的贡献率均超过10.0%),55.5%的数据集显示了几个主要QTL,但较小的QTL ,还有30.0%的QTL很小。除检测到的QTL外,集体未映射的次要QTL有时占许多性状遗传变异的50%以上。与连锁图谱集成在一起,对种质种群进行关联图谱,并经过验证可以提供关于多个QTL及其多个等位基因的完整信息。因此,鉴定了RC,LR和WS大样品的QTL及其农艺性状的等位基因,然后建立了QTL-等位基因矩阵。在此基础上,可以选择亲本材料,以便在基因座和等位基因之间进行互补重组,从而使遗传杂交计划得以优化。这种方法提供了一种通过设计进行育种的方法,但是准确性将取决于基因座和等位基因矩阵的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号