首页> 外文期刊>Artificial Intelligence Review: An International Science and Engineering Journal >Techniques and experience in mining remotely sensed satellite data
【24h】

Techniques and experience in mining remotely sensed satellite data

机译:挖掘遥感卫星数据的技术和经验

获取原文
获取原文并翻译 | 示例

摘要

The paper presents a set of requirements for a data mining system for mining remotely sensed satellite data based on a number of taxonomies that characterize mining of such data. The first of these taxonomies is based on knowledge of the mining objectives and mining algorithms. The second is based on various relationships that are found in data, including those between different types of data, different spatial locations of the data and different times of data capture. The paper then describes the ADaM data mining system, which was developed to address these requirements. The paper describes several data mining techniques that have been applied to remotely sensed data. The first type is target independent mining, which mines data for transients and trends, with mined results representing a highly concentrated form of the original data. The second type is the mining of vectors (representing multi-spectral or fused data) for association rules representing relationships between the various types of data represented by the elements of the vector. The third type mines data for association rules that characterize the texture of the data.
机译:本文提出了一套数据挖掘系统的要求,该系统基于许多表征此类数据挖掘的分类法来挖掘遥感卫星数据。这些分类法中的第一个是基于对挖掘目标和挖掘算法的了解。第二种是基于在数据中发现的各种关系,包括不同类型的数据,数据的不同空间位置和数据捕获的不同时间之间的关系。然后,本文描述了为满足这些要求而开发的ADaM数据挖掘系统。本文介绍了几种已应用于遥感数据的数据挖掘技术。第一种类型是目标无关的挖掘,用于挖掘瞬态和趋势的数据,挖掘的结果表示原始数据的高度集中形式。第二种类型是针对关联规则的向量(代表多光谱或融合数据)的挖掘,该关联规则表示由向量元素表示的各种类型的数据之间的关系。第三种类型为关联规则挖掘数据,这些规则描述了数据的纹理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号