首页> 外文期刊>Journal of Internet Technology >Effective Radio Resource Allocation for IoT Random Access by Using Reinforcement Learning
【24h】

Effective Radio Resource Allocation for IoT Random Access by Using Reinforcement Learning

机译:基于强化学习的物联网随机接入有效无线资源分配

获取原文
获取原文并翻译 | 示例

摘要

Emerging intelligent and highly interactive services result in the mass deployment of internet of things (IoT) devices. They are dominating wireless communication networks compared to human-held devices. Random access performance is one of the most critical issues in providing quick responses to various IoT services. In addition to the anchor carrier, the non-anchor carrier can be flexibly allocated to support the random access procedure in release 14 of the 3rd generation partnership project. However, arranging more non-anchor carriers for the use of random access will squeeze the data transmission bandwidth in a narrowband physical uplink shared channel. In this paper, we propose the prediction-based random access resource allocation (PRARA) scheme to properly allocated the non-anchor carrier by applying reinforcement learning. The simulation results show that the proposed PRARA can improve the random access performance and effectively use the radio resource compared to the rule-based scheme.
机译:新兴智能和高度交互的导致大规模部署的服务物联网(物联网)设备。控制无线通信网络相比human-held设备。性能是最重要的问题之一提供快速响应各种物联网服务。可以灵活地分配给非链接载体支持随机存取过程释放14第三代合作伙伴计划。然而,安排更多的非链接运营商随机存取将压缩数据的使用在窄带物理传输带宽上行共享渠道。prediction-based随机访问的资源分配(PRARA)计划,合理分配非链接载体运用强化学习。提出PRARA可以提高随机存取性能和有效地使用收音机资源相比,基于规则的方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号