...
首页> 外文期刊>Archives of Environmental Contamination and Toxicology >Bismuth(III) Volatilization and Immobilization by Filamentous Fungus Aspergillus clavatus During Aerobic Incubation
【24h】

Bismuth(III) Volatilization and Immobilization by Filamentous Fungus Aspergillus clavatus During Aerobic Incubation

机译:有丝菌发酵过程中丝状真菌曲霉的铋(III)挥发和固定化

获取原文
获取原文并翻译 | 示例
           

摘要

As with many metals, bismuth can be accumulated or transformed by microorganisms. These interactions affect microbial consortia and bismuth environmental behaviour, mobility, and toxicity. Recent research focused specifically on bismuth anaerobic transformation by bacteria and archaea has inspired the evaluation of the mutual interactions between bismuth and filamentous fungi as presented in this article. The Aspergillus clavatus fungus proved resistant to adverse effects from bismuth contamination in culture medium with up to a concentration of 195 A mu mol L-1 during static 15- and 30-day cultivation. The examined resistance mechanism includes biosorption to the fungal surface and biovolatilization. Pelletized fungal biomass has shown high affinity for dissolved bismuth(III). Bismuth biosorption was rapid, reaching equilibrium after 50 min with a 0.35 mmol g(-1) maximum sorption capacity as calculated from the Langmuir isotherm. A. clavatus accumulated a parts per thousand currency sign70 A mu mol g(-1) of bismuth after 30 days. Preceding isotherm study implications that most accumulated bismuth binds to cell wall suggests that biosorption is the main detoxification mechanism. Accumulated bismuth was also partly volatilized (a parts per thousand currency sign1 A mu mol) or sequestrated in the cytosol or vacuoles. Concurrently, a parts per thousand currency sign1.6 A mu mol of bismuth remaining in solution was precipitated by fungal activity. These observations indicate that complex mutual interactions between bismuth and filamentous fungi are environmentally significant regarding bismuth mobility and transformation.
机译:与许多金属一样,铋可以被微生物积累或转化。这些相互作用影响微生物群落和铋的环境行为,流动性和毒性。最近针对细菌和古细菌进行铋厌氧转化的最新研究激发了对本文所述的铋与丝状真菌之间相互作用的评估。事实证明,在静态15天和30天培养过程中,浓度高达195 Aμmol L-1的培养基中的铋污染,对曲霉曲霉真菌具有抵抗力。所检查的抗性机制包括对真菌表面的生物吸附和生物挥发。粒状真菌生物质对溶解的铋(III)具有很高的亲和力。铋的生物吸附速度很快,在50分钟后达到平衡,根据Langmuir等温线计算,其最大吸附容量为0.35 mmol g(-1)。 30天后,蛤lava每千货币符号中积累了70 Aμmol g(-1)的铋。之前等温线研究表明,大多数积累的铋与细胞壁结合,这表明生物吸附是主要的排毒机理。累积的铋也部分挥发(每千货币单位1 A mol的份数)或封存在胞质溶胶或液泡中。同时,每千分之一货币符号1.6通过溶液中的真菌活性沉淀出溶液中残留的一摩尔摩尔的铋。这些观察结果表明,铋与丝状真菌之间复杂的相互作用对铋的迁移和转化具有重要的环境意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号