首页> 外文期刊>Applied mathematics and computation >A method to improve integer linear programming problem with branch-and-bound procedure
【24h】

A method to improve integer linear programming problem with branch-and-bound procedure

机译:一种用分支定界法改善整数线性规划问题的方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Integer linear programming (ILP) problems are harder to solve than linear programming (LP) problems. It doesn't work if try to round off the results of LP problems and claim they are the optimum solution. The branch-and-bound (B&B) is the popular method to solve ILP problems. In this paper, we propose a revised B&B, which is demonstrated to be more efficient most of time. This method is extraordinarily useful when facing ILP problems with large differences between constraints and variables. It could reduce the number of constraint and work efficiently when handling ILP problems with many constraints and less variables. Even if the ILP problems have fewer constraints but many variables, we suggest using duality concept to interchange variables with constraints. Then, the revised B&B could be used to compute results very quickly. (c) 2006 Elsevier Inc. All rights reserved.
机译:整数线性规划(ILP)问题比线性规划(LP)问题更难解决。如果试图将LP问题的结果四舍五入并声称它们是最佳解决方案,那是行不通的。分支定界(B&B)是解决ILP问题的常用方法。在本文中,我们建议对B&B进行修订,使其在大多数情况下效率更高。当面对约束和变量之间差异较大的ILP问题时,此方法特别有用。当处理具有很多约束且变量较少的ILP问题时,它可以减少约束的数量并有效地工作。即使ILP问题的约束较少,但变量很多,我们建议使用对偶概念来交换具有约束的变量。然后,修订后的B&B可以非常快速地用于计算结果。 (c)2006 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号